{"title":"Rheological Analysis of 3D Printed Elements of Acrylonitrile Butadiene and Styrene Material Using Multiparameter Ideal Body Models.","authors":"Wiktor Szot","doi":"10.1089/3dp.2022.0298","DOIUrl":null,"url":null,"abstract":"<p><p>The growing application of additive technologies in various industrial fields determines the undertaking of research in this direction. The need to study mechanical properties, including rheological properties, is necessitated by the use of additively manufactured models as utility models. Furthermore, the values of mechanical properties are affected by the technological parameters of 3D printing. One of the popular engineering materials used in 3D printing is acrylonitrile butadiene and styrene, commonly known by the abbreviated name ABS, which is quite hard and resistant to high temperatures. This article presents a study of the rheological properties of ABS material using multiparameter ideal body models. Two rheological phenomena of stress relaxation and creep were evaluated. The effects of two technological parameters, layer height and printing direction, on the resulting values of elastic moduli and dynamic viscosity coefficients were also evaluated. The elastic moduli and dynamic viscosity coefficients were calculated using the Maxwell-Wiechert and Kelvin-Voight models. The study showed the effect of layer height on rheological properties. Moreover, very good fit was obtained between the multiparameter rheological models and the experimental curves, which are shown by the average value of <math><mover><mrow><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mo>¯</mo></mover><mo>=</mo><mn>0</mn><mo>.</mo><mn>001</mn></math> and <math><mover><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mo>¯</mo></mover><mo>=</mo><mn>0</mn><mo>.</mo><mn>9991</mn></math>. The presented research can be used by designers to design machine parts or car or aircraft components. Moreover, research expands knowledge of the mechanical properties of additively manufactured parts.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0298","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The growing application of additive technologies in various industrial fields determines the undertaking of research in this direction. The need to study mechanical properties, including rheological properties, is necessitated by the use of additively manufactured models as utility models. Furthermore, the values of mechanical properties are affected by the technological parameters of 3D printing. One of the popular engineering materials used in 3D printing is acrylonitrile butadiene and styrene, commonly known by the abbreviated name ABS, which is quite hard and resistant to high temperatures. This article presents a study of the rheological properties of ABS material using multiparameter ideal body models. Two rheological phenomena of stress relaxation and creep were evaluated. The effects of two technological parameters, layer height and printing direction, on the resulting values of elastic moduli and dynamic viscosity coefficients were also evaluated. The elastic moduli and dynamic viscosity coefficients were calculated using the Maxwell-Wiechert and Kelvin-Voight models. The study showed the effect of layer height on rheological properties. Moreover, very good fit was obtained between the multiparameter rheological models and the experimental curves, which are shown by the average value of and . The presented research can be used by designers to design machine parts or car or aircraft components. Moreover, research expands knowledge of the mechanical properties of additively manufactured parts.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.