Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia

IF 20 0 CHEMISTRY, MULTIDISCIPLINARY
Qiang Gao, Bingqing Yao, Hemanth Somarajan Pillai, Wenjie Zang, Xue Han, Yuanqi Liu, Shen-Wei Yu, Zihao Yan, Bokki Min, Sen Zhang, Hua Zhou, Lu Ma, Hongliang Xin, Qian He, Huiyuan Zhu
{"title":"Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia","authors":"Qiang Gao, Bingqing Yao, Hemanth Somarajan Pillai, Wenjie Zang, Xue Han, Yuanqi Liu, Shen-Wei Yu, Zihao Yan, Bokki Min, Sen Zhang, Hua Zhou, Lu Ma, Hongliang Xin, Qian He, Huiyuan Zhu","doi":"10.1038/s44160-023-00258-x","DOIUrl":null,"url":null,"abstract":"Structurally ordered intermetallic nanocrystals (NCs) and single-atom catalysts (SACs) are two emerging catalytic motifs for sustainable chemical production and energy conversion. However, both have synthetic limitations which can lead to the aggregation of NCs or metal atoms. Single-atom alloys (SAAs), which contain isolated metal atoms in a host metal, can overcome the aggregation concern because of the thermodynamic stabilization of single atoms on host metal surfaces. Here we report a direct solution-phase synthesis of Cu/CuAu core/shell NCs with tunable SAA layers. This synthesis can be extended to other Cu/CuM (M = Pt, Pd) systems, in which M atoms are isolated in the copper host. Using this method, the density of SAAs on a copper surface can be controlled, resulting in both low and high densities of single atoms. Alloying gold into the copper matrix introduced ligand effects that optimized the chemisorption of *NO3 and *N. As a result, the densely packed Cu/CuAu material demonstrated a high selectivity toward NH3 from the electrocatalytic nitrate reduction reaction with an 85.5% Faradaic efficiency while maintaining a high yield rate of 8.47 mol h−1 g−1. This work advances the design of atomically precise catalytic sites by creating core/shell NCs with SAA atomic layers, opening an avenue for broad catalytic applications. Well-defined single-atom alloy (SAA) nanocrystals possess isolated atom centres and tunable electronic properties but are challenging to synthesize. Here, a direct solution-phase synthesis of Cu/CuAu core/shell nanocubes with tunable SAA layers is reported. The Cu/CuAu nanomaterial is highly active for the electrocatalytic conversion of nitrate into ammonia.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"2 7","pages":"624-634"},"PeriodicalIF":20.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-023-00258-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

Abstract

Structurally ordered intermetallic nanocrystals (NCs) and single-atom catalysts (SACs) are two emerging catalytic motifs for sustainable chemical production and energy conversion. However, both have synthetic limitations which can lead to the aggregation of NCs or metal atoms. Single-atom alloys (SAAs), which contain isolated metal atoms in a host metal, can overcome the aggregation concern because of the thermodynamic stabilization of single atoms on host metal surfaces. Here we report a direct solution-phase synthesis of Cu/CuAu core/shell NCs with tunable SAA layers. This synthesis can be extended to other Cu/CuM (M = Pt, Pd) systems, in which M atoms are isolated in the copper host. Using this method, the density of SAAs on a copper surface can be controlled, resulting in both low and high densities of single atoms. Alloying gold into the copper matrix introduced ligand effects that optimized the chemisorption of *NO3 and *N. As a result, the densely packed Cu/CuAu material demonstrated a high selectivity toward NH3 from the electrocatalytic nitrate reduction reaction with an 85.5% Faradaic efficiency while maintaining a high yield rate of 8.47 mol h−1 g−1. This work advances the design of atomically precise catalytic sites by creating core/shell NCs with SAA atomic layers, opening an avenue for broad catalytic applications. Well-defined single-atom alloy (SAA) nanocrystals possess isolated atom centres and tunable electronic properties but are challenging to synthesize. Here, a direct solution-phase synthesis of Cu/CuAu core/shell nanocubes with tunable SAA layers is reported. The Cu/CuAu nanomaterial is highly active for the electrocatalytic conversion of nitrate into ammonia.

Abstract Image

具有有序金属间单原子合金层的核/壳纳米晶体的合成用于硝酸盐电还原制氨
结构有序的金属间纳米晶体(NC)和单原子催化剂(SAC)是用于可持续化学生产和能源转换的两种新兴催化模式。然而,这两种催化剂都存在合成限制,可能导致 NC 或金属原子聚集。单原子合金(SAAs)在主金属中含有孤立的金属原子,由于单原子在主金属表面的热力学稳定性,可以克服聚集问题。在此,我们报告了一种具有可调 SAA 层的 Cu/CuAu 核/壳 NC 的直接溶液相合成方法。这种合成方法可扩展到其他 Cu/CuM(M = Pt、Pd)体系,其中 M 原子被隔离在铜宿主中。利用这种方法,可以控制铜表面的 SAA 密度,从而产生低密度和高密度的单原子。将金合金化到铜基体中引入了配体效应,从而优化了 *NO3 和 *N 的化学吸附。因此,致密的 Cu/CuAu 材料在电催化硝酸盐还原反应中对 NH3 具有很高的选择性,法拉第效率高达 85.5%,同时保持了 8.47 mol h-1 g-1 的高产率。这项工作通过创建具有 SAA 原子层的核/壳 NC,推进了原子精确催化位点的设计,为广泛的催化应用开辟了道路。定义明确的单原子合金(SAA)纳米晶体具有孤立的原子中心和可调的电子特性,但合成难度很大。本文报告了一种直接溶液相合成具有可调 SAA 层的铜/铜核/壳纳米立方体的方法。Cu/CuAu 纳米材料在硝酸转化为氨的电催化过程中具有很高的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信