Optimal control for a class of fractional order neutral evolution equations

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
He Yang, Jihong Wang
{"title":"Optimal control for a class of fractional order neutral evolution equations","authors":"He Yang, Jihong Wang","doi":"10.1515/ijnsns-2021-0410","DOIUrl":null,"url":null,"abstract":"Abstract The optimal control, for a class of nonlinear neutral evolution equations involving Riemann–Liouville fractional derivative, is investigated in this paper by using Darbo–Sadovskii fixed point theorem. An example is given in the last section to illustrate the validity of the abstract conclusions.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"1233 - 1248"},"PeriodicalIF":1.4000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0410","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The optimal control, for a class of nonlinear neutral evolution equations involving Riemann–Liouville fractional derivative, is investigated in this paper by using Darbo–Sadovskii fixed point theorem. An example is given in the last section to illustrate the validity of the abstract conclusions.
一类分数阶中立型发展方程的最优控制
摘要利用Darbo–Sadovski不动点定理研究了一类包含Riemann–Liouville分数导数的非线性中立型发展方程的最优控制。最后一节给出了一个例子来说明抽象结论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信