{"title":"Conservation and Management of Salmon in the Age of Genomics.","authors":"R. Waples, Kerry A. Naish, C. Primmer","doi":"10.1146/annurev-animal-021419-083617","DOIUrl":null,"url":null,"abstract":"Salmon were among the first nonmodel species for which systematic population genetic studies of natural populations were conducted, often to support management and conservation. The genomics revolution has improved our understanding of the evolutionary ecology of salmon in two major ways: (a) Large increases in the numbers of genetic markers (from dozens to 104-106) provide greater power for traditional analyses, such as the delineation of population structure, hybridization, and population assignment, and (b) qualitatively new insights that were not possible with traditional genetic methods can be achieved by leveraging detailed information about the structure and function of the genome. Studies of the first type have been more common to date, largely because it has taken time for the necessary tools to be developed to fully understand the complex salmon genome. We expect that the next decade will witness many new studies that take full advantage of salmonid genomic resources. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 8 is February 15, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"1 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-animal-021419-083617","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Animal Biosciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-animal-021419-083617","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 30
Abstract
Salmon were among the first nonmodel species for which systematic population genetic studies of natural populations were conducted, often to support management and conservation. The genomics revolution has improved our understanding of the evolutionary ecology of salmon in two major ways: (a) Large increases in the numbers of genetic markers (from dozens to 104-106) provide greater power for traditional analyses, such as the delineation of population structure, hybridization, and population assignment, and (b) qualitatively new insights that were not possible with traditional genetic methods can be achieved by leveraging detailed information about the structure and function of the genome. Studies of the first type have been more common to date, largely because it has taken time for the necessary tools to be developed to fully understand the complex salmon genome. We expect that the next decade will witness many new studies that take full advantage of salmonid genomic resources. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 8 is February 15, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Animal Biosciences is primarily dedicated to the fields of biotechnology, genetics, genomics, and breeding, with a special focus on veterinary medicine. This includes veterinary pathobiology, infectious diseases and vaccine development, and conservation and zoo biology. The publication aims to address the needs of scientists studying both wild and domesticated animal species, veterinarians, conservation biologists, and geneticists.