In silico Identification of Potential Human Acetylcholinesterase Inhibitors from the Nigella sativa Phytochemicals

IF 0.1 4区 医学
Hani S. H. Mohammed Ali
{"title":"In silico Identification of Potential Human Acetylcholinesterase Inhibitors from the Nigella sativa Phytochemicals","authors":"Hani S. H. Mohammed Ali","doi":"10.1166/jbt.2023.3221","DOIUrl":null,"url":null,"abstract":"Acetylcholinesterase degrades the neurotransmitter acetylcholine in nervous system synapses to regulate neurotransmission. It has been demonstrated to be effective as a therapeutic target as well as a target for Alzheimer’s disease drugs. Primary phytoconstituents components of\n Nigella sativa were identified in this study based on their affinity for an active site binding of Human Acetylcholinesterase. Molecular dynamics and molecular docking methods were used to test the stability of the topmost docking complex. Out of the nine phytochemicals studied in this\n study, three molecules, Dithymoquinone, Nigellicine, and Nigellidine, were found to have a significant docking score. Based on our findings, Dithymoquinone is the most potent inhibitor of Human Acetylcholinesterase. It is the least energetic protein (10.1 Kcal/mol), resulting in the highest\n binding affinity. Molecular dynamics studies confirmed the stability of the Dithymoquinone-Human Acetylcholinesterase complex.","PeriodicalId":15300,"journal":{"name":"Journal of Biomaterials and Tissue Engineering","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials and Tissue Engineering","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1166/jbt.2023.3221","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acetylcholinesterase degrades the neurotransmitter acetylcholine in nervous system synapses to regulate neurotransmission. It has been demonstrated to be effective as a therapeutic target as well as a target for Alzheimer’s disease drugs. Primary phytoconstituents components of Nigella sativa were identified in this study based on their affinity for an active site binding of Human Acetylcholinesterase. Molecular dynamics and molecular docking methods were used to test the stability of the topmost docking complex. Out of the nine phytochemicals studied in this study, three molecules, Dithymoquinone, Nigellicine, and Nigellidine, were found to have a significant docking score. Based on our findings, Dithymoquinone is the most potent inhibitor of Human Acetylcholinesterase. It is the least energetic protein (10.1 Kcal/mol), resulting in the highest binding affinity. Molecular dynamics studies confirmed the stability of the Dithymoquinone-Human Acetylcholinesterase complex.
黑草植物化学物质中潜在人乙酰胆碱酯酶抑制剂的计算机鉴定
乙酰胆碱酯酶降解神经系统突触中的神经递质乙酰胆碱,调节神经传递。它已被证明是有效的治疗靶点以及阿尔茨海默病药物的靶点。本研究通过对人乙酰胆碱酯酶活性位点结合的亲和力鉴定了黑草的主要植物成分。采用分子动力学和分子对接方法对最顶层对接配合物的稳定性进行了测试。在本研究研究的9种植物化学物质中,发现二thymoquinone、nigelliine和Nigellidine这3种分子具有显著的对接得分。根据我们的研究结果,二thymo醌是人类乙酰胆碱酯酶最有效的抑制剂。它是能量最低的蛋白质(10.1 Kcal/mol),具有最高的结合亲和力。分子动力学研究证实了二百里醌-人乙酰胆碱酯酶复合物的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
332
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信