Cardiac MRI Segmentation Using Efficient ResNeXT-50-Based IEI Level Set and Anisotropic Sigmoid Diffusion Algorithms

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Anupama Bhan, Parthasarathi Mangipudi, Ayush Goyal
{"title":"Cardiac MRI Segmentation Using Efficient ResNeXT-50-Based IEI Level Set and Anisotropic Sigmoid Diffusion Algorithms","authors":"Anupama Bhan, Parthasarathi Mangipudi, Ayush Goyal","doi":"10.1142/s0219467823400144","DOIUrl":null,"url":null,"abstract":"Endocardial and epicardial border identification has been of extensive interest in cardiac Magnetic Resonance Images (MRIs). It is a difficult job to segment the epicardium and endocardium accurately and automatically from cardiac MRI owing to the cardiac tissues’ complexity even though the prevailing Deep Learning (DL) methodologies had attained significant success in medical imaging segmentation. Hence, by employing effectual ResNeXT-50-centric Inverse Edge Indicator Level Set (IEILS) and anisotropic sigmoid diffusion algorithms, this system has proposed cardiac MRI segmentation. The work has endured some function for an effectual partition of epicardium and endocardium. Initially, by employing the Truncated Kernel Function (TK)-Trilateral Filter, the noise removal function is executed on the input cardiac MRI. Next, by wielding the ResNeXT-50 IEILS, the Left and Right Ventricular (LV/RV) regions are segmented. The epicardium and endocardium are segmented by the ASD algorithm once the LV/RV is separated from the Left Ventricle (LV) region. Here, the openly accessible Sunnybrook and the Right Ventricle (RV) datasets are wielded. Then, the prevailing state-of-art algorithms are analogized to the outcomes achieved by the proposed framework. Regarding accuracy, sensitivity, and specificity, the proposed methodology executed the cardiac MRI segmentation process precisely along with the other surpassed state-of-the-art methodologies.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467823400144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Endocardial and epicardial border identification has been of extensive interest in cardiac Magnetic Resonance Images (MRIs). It is a difficult job to segment the epicardium and endocardium accurately and automatically from cardiac MRI owing to the cardiac tissues’ complexity even though the prevailing Deep Learning (DL) methodologies had attained significant success in medical imaging segmentation. Hence, by employing effectual ResNeXT-50-centric Inverse Edge Indicator Level Set (IEILS) and anisotropic sigmoid diffusion algorithms, this system has proposed cardiac MRI segmentation. The work has endured some function for an effectual partition of epicardium and endocardium. Initially, by employing the Truncated Kernel Function (TK)-Trilateral Filter, the noise removal function is executed on the input cardiac MRI. Next, by wielding the ResNeXT-50 IEILS, the Left and Right Ventricular (LV/RV) regions are segmented. The epicardium and endocardium are segmented by the ASD algorithm once the LV/RV is separated from the Left Ventricle (LV) region. Here, the openly accessible Sunnybrook and the Right Ventricle (RV) datasets are wielded. Then, the prevailing state-of-art algorithms are analogized to the outcomes achieved by the proposed framework. Regarding accuracy, sensitivity, and specificity, the proposed methodology executed the cardiac MRI segmentation process precisely along with the other surpassed state-of-the-art methodologies.
基于高效ResNeXT-50的IEI水平集和各向异性Sigmoid扩散算法的心脏MRI分割
心内膜和心外膜边界识别在心脏磁共振成像中引起了广泛的兴趣。由于心脏组织的复杂性,即使主流的深度学习(DL)方法在医学成像分割中取得了显著成功,但从心脏MRI中准确、自动地分割心外膜和心内膜仍然是一项困难的工作。因此,该系统采用有效的ResNeXT-50心室反向边缘指标水平集(IEILS)和各向异性S形扩散算法,提出了心脏MRI分割。这项工作对心外膜和心内膜的有效分隔具有一定的作用。最初,通过使用截断核函数(TK)-三边滤波器,在输入的心脏MRI上执行噪声去除功能。接下来,通过使用ResNeXT-50 IEILS,对左心室和右心室(LV/RV)区域进行分割。一旦LV/RV与左心室(LV)区域分离,就通过ASD算法对心外膜和心内膜进行分割。这里,使用了可公开访问的Sunnybrook和右心室(RV)数据集。然后,将现有技术的算法与所提出的框架所获得的结果进行类比。在准确性、敏感性和特异性方面,所提出的方法与其他超越最先进技术的方法一起精确地执行了心脏MRI分割过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信