The deeper the better? A thermogeological analysis of medium-deep borehole heat exchangers in low-enthalpy crystalline rocks

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS
Kaiu Piipponen, Annu Martinkauppi, Kimmo Korhonen, Sami Vallin, Teppo Arola, Alan Bischoff, Nina Leppäharju
{"title":"The deeper the better? A thermogeological analysis of medium-deep borehole heat exchangers in low-enthalpy crystalline rocks","authors":"Kaiu Piipponen,&nbsp;Annu Martinkauppi,&nbsp;Kimmo Korhonen,&nbsp;Sami Vallin,&nbsp;Teppo Arola,&nbsp;Alan Bischoff,&nbsp;Nina Leppäharju","doi":"10.1186/s40517-022-00221-7","DOIUrl":null,"url":null,"abstract":"<div><p>The energy sector is undergoing a fundamental transformation, with a significant investment in low-carbon technologies to replace fossil-based systems. In densely populated urban areas, deep boreholes offer an alternative over shallow geothermal systems, which demand extensive surface areas to attain large-scale heat production. This paper presents numerical calculations of the thermal energy that can be extracted from the medium-deep borehole heat exchangers in the low-enthalpy geothermal setting at depths ranging from 600 to 3000 m. We applied the thermogeological parameters of three locations across Finland and tested two types of coaxial borehole heat exchangers to understand better the variables that affect heat production in low-permeability crystalline rocks. For each depth, location, and heat collector type, we used a range of fluid flow rates to examine the correlation between thermal energy production and resulting outlet temperature. Our results indicate a trade-off between thermal energy production and outlet fluid temperature depending on the fluid flow rate, and that the vacuum-insulated tubing outperforms a high-density polyethylene pipe in energy and temperature production. In addition, the results suggest that the local thermogeological factors impact heat production. Maximum energy production from a 600-m-deep well achieved 170 MWh/a, increasing to 330 MWh/a from a 1000-m-deep well, 980 MWh/a from a 2-km-deep well, and up to 1880 MWh/a from a 3-km-deep well. We demonstrate that understanding the interplay of the local geology, heat exchanger materials, and fluid circulation rates is necessary to maximize the potential of medium-deep geothermal boreholes as a reliable long-term baseload energy source.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00221-7","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-022-00221-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 6

Abstract

The energy sector is undergoing a fundamental transformation, with a significant investment in low-carbon technologies to replace fossil-based systems. In densely populated urban areas, deep boreholes offer an alternative over shallow geothermal systems, which demand extensive surface areas to attain large-scale heat production. This paper presents numerical calculations of the thermal energy that can be extracted from the medium-deep borehole heat exchangers in the low-enthalpy geothermal setting at depths ranging from 600 to 3000 m. We applied the thermogeological parameters of three locations across Finland and tested two types of coaxial borehole heat exchangers to understand better the variables that affect heat production in low-permeability crystalline rocks. For each depth, location, and heat collector type, we used a range of fluid flow rates to examine the correlation between thermal energy production and resulting outlet temperature. Our results indicate a trade-off between thermal energy production and outlet fluid temperature depending on the fluid flow rate, and that the vacuum-insulated tubing outperforms a high-density polyethylene pipe in energy and temperature production. In addition, the results suggest that the local thermogeological factors impact heat production. Maximum energy production from a 600-m-deep well achieved 170 MWh/a, increasing to 330 MWh/a from a 1000-m-deep well, 980 MWh/a from a 2-km-deep well, and up to 1880 MWh/a from a 3-km-deep well. We demonstrate that understanding the interplay of the local geology, heat exchanger materials, and fluid circulation rates is necessary to maximize the potential of medium-deep geothermal boreholes as a reliable long-term baseload energy source.

越深越好?低焓结晶岩中深孔换热器热地质分析
能源部门正在经历一场根本性的变革,在低碳技术方面进行了大量投资,以取代化石燃料系统。在人口密集的城市地区,深钻孔比浅层地热系统提供了另一种选择,浅层地热系统需要广泛的地表面积来实现大规模的供热。本文对600 ~ 3000 m低焓地热环境下中深钻孔换热器可提取的热能进行了数值计算。我们应用了芬兰三个地点的热地质参数,并测试了两种同轴钻孔热交换器,以更好地了解影响低渗透结晶岩石产热的变量。对于每个深度、位置和集热器类型,我们使用一系列流体流速来检查热能产生与最终出口温度之间的相关性。我们的研究结果表明,根据流体流速的不同,热能产生和出口流体温度之间存在权衡,真空绝热管在能量和温度产生方面优于高密度聚乙烯管。此外,研究结果表明,局部热地质因素影响产热。600米深井的最大发电量为170兆瓦时/年,1000米深井的最大发电量为330兆瓦时/年,2公里深井的最大发电量为980兆瓦时/年,3公里深井的最大发电量为1880兆瓦时/年。我们证明,了解当地地质,热交换器材料和流体循环速率的相互作用是必要的,以最大限度地发挥中深层地热钻孔作为可靠的长期基本负荷能源的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信