Heegaard genus and complexity of fibered knots

IF 0.8 2区 数学 Q2 MATHEMATICS
Mustafa Cengiz
{"title":"Heegaard genus and complexity of fibered knots","authors":"Mustafa Cengiz","doi":"10.1112/topo.12268","DOIUrl":null,"url":null,"abstract":"<p>We prove that if a fibered knot <math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> with genus greater than 1 in a three-manifold <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> has a sufficiently complicated monodromy, then <math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> induces a minimal genus Heegaard splitting <math>\n <semantics>\n <mi>P</mi>\n <annotation>$P$</annotation>\n </semantics></math> that is unique up to isotopy, and small genus Heegaard splittings of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> are stabilizations of <math>\n <semantics>\n <mi>P</mi>\n <annotation>$P$</annotation>\n </semantics></math>. We provide a complexity bound in terms of the Heegaard genus of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>. We also provide global complexity bounds for fibered knots in the three-sphere and lens spaces.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"15 4","pages":"2389-2425"},"PeriodicalIF":0.8000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12268","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that if a fibered knot K $K$ with genus greater than 1 in a three-manifold M $M$ has a sufficiently complicated monodromy, then K $K$ induces a minimal genus Heegaard splitting P $P$ that is unique up to isotopy, and small genus Heegaard splittings of M $M$ are stabilizations of P $P$ . We provide a complexity bound in terms of the Heegaard genus of M $M$ . We also provide global complexity bounds for fibered knots in the three-sphere and lens spaces.

有纤维结的精梳属和复杂性
我们证明了在三流形M$ M$中,如果一个格值大于1的纤维结K$ K$有一个足够复杂的一元,那么K$ K$就会引出一个最小格值heegard分裂P$ P$,该分裂P$ P$在同位素上是唯一的。M$ M$的小属heegard分裂是P$ P$的稳定化。我们给出了M$ M$的Heegaard格的复杂度界。我们还提供了三球面和透镜空间中纤维结的全局复杂性界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信