Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on $\mathbb {T}^{4}$

IF 2.8 1区 数学 Q1 MATHEMATICS
Xuwen Chen, J. Holmer
{"title":"Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on $\\mathbb {T}^{4}$","authors":"Xuwen Chen, J. Holmer","doi":"10.1017/fmp.2021.16","DOIUrl":null,"url":null,"abstract":"Abstract We consider the $\\mathbb {T}^{4}$ cubic nonlinear Schrödinger equation (NLS), which is energy-critical. We study the unconditional uniqueness of solutions to the NLS via the cubic Gross–Pitaevskii hierarchy, an uncommon method for NLS analysis which is being explored [24, 35] and does not require the existence of a solution in Strichartz-type spaces. We prove U-V multilinear estimates to replace the previously used Sobolev multilinear estimates. To incorporate the weaker estimates, we work out new combinatorics from scratch and compute, for the first time, the time integration limits, in the recombined Duhamel–Born expansion. The new combinatorics and the U-V estimates then seamlessly conclude the $H^{1}$ unconditional uniqueness for the NLS under the infinite-hierarchy framework. This work establishes a unified scheme to prove $H^{1}$ uniqueness for the $ \\mathbb {R}^{3}/\\mathbb {R}^{4}/\\mathbb {T}^{3}/\\mathbb {T}^{4}$ energy-critical Gross–Pitaevskii hierarchies and thus the corresponding NLS.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2021.16","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract We consider the $\mathbb {T}^{4}$ cubic nonlinear Schrödinger equation (NLS), which is energy-critical. We study the unconditional uniqueness of solutions to the NLS via the cubic Gross–Pitaevskii hierarchy, an uncommon method for NLS analysis which is being explored [24, 35] and does not require the existence of a solution in Strichartz-type spaces. We prove U-V multilinear estimates to replace the previously used Sobolev multilinear estimates. To incorporate the weaker estimates, we work out new combinatorics from scratch and compute, for the first time, the time integration limits, in the recombined Duhamel–Born expansion. The new combinatorics and the U-V estimates then seamlessly conclude the $H^{1}$ unconditional uniqueness for the NLS under the infinite-hierarchy framework. This work establishes a unified scheme to prove $H^{1}$ uniqueness for the $ \mathbb {R}^{3}/\mathbb {R}^{4}/\mathbb {T}^{3}/\mathbb {T}^{4}$ energy-critical Gross–Pitaevskii hierarchies and thus the corresponding NLS.
$\mathbb{T}^{4}上能量临界非线性Schrödinger方程的无条件唯一性$
摘要我们考虑了能量临界的$\mathbb{T}^{4}$三次非线性薛定谔方程。我们通过三次Gross–Pitaevskii层次研究了NLS解的无条件唯一性,这是一种正在探索的NLS分析的罕见方法[24,35],不需要在Strichartz型空间中存在解。我们证明了U-V多线性估计取代了以前使用的Sobolev多线性估计。为了合并较弱的估计,我们从头开始计算新的组合数学,并在重新组合的Duhamel–Born展开中首次计算时间积分极限。然后,新的组合数学和U-V估计无缝地得出了无限层次框架下NLS的$H^{1}$无条件唯一性。这项工作建立了一个统一的方案来证明$\mathbb{R}^{3}/\mathbb{R}^{4}/\mathpb{T}^}3}/\mathbb{T}^{4}$能量关键Gross–Pitaevskii层次结构的$H^{1}$唯一性,从而证明相应的NLS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信