{"title":"Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on $\\mathbb {T}^{4}$","authors":"Xuwen Chen, J. Holmer","doi":"10.1017/fmp.2021.16","DOIUrl":null,"url":null,"abstract":"Abstract We consider the $\\mathbb {T}^{4}$ cubic nonlinear Schrödinger equation (NLS), which is energy-critical. We study the unconditional uniqueness of solutions to the NLS via the cubic Gross–Pitaevskii hierarchy, an uncommon method for NLS analysis which is being explored [24, 35] and does not require the existence of a solution in Strichartz-type spaces. We prove U-V multilinear estimates to replace the previously used Sobolev multilinear estimates. To incorporate the weaker estimates, we work out new combinatorics from scratch and compute, for the first time, the time integration limits, in the recombined Duhamel–Born expansion. The new combinatorics and the U-V estimates then seamlessly conclude the $H^{1}$ unconditional uniqueness for the NLS under the infinite-hierarchy framework. This work establishes a unified scheme to prove $H^{1}$ uniqueness for the $ \\mathbb {R}^{3}/\\mathbb {R}^{4}/\\mathbb {T}^{3}/\\mathbb {T}^{4}$ energy-critical Gross–Pitaevskii hierarchies and thus the corresponding NLS.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2021.16","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract We consider the $\mathbb {T}^{4}$ cubic nonlinear Schrödinger equation (NLS), which is energy-critical. We study the unconditional uniqueness of solutions to the NLS via the cubic Gross–Pitaevskii hierarchy, an uncommon method for NLS analysis which is being explored [24, 35] and does not require the existence of a solution in Strichartz-type spaces. We prove U-V multilinear estimates to replace the previously used Sobolev multilinear estimates. To incorporate the weaker estimates, we work out new combinatorics from scratch and compute, for the first time, the time integration limits, in the recombined Duhamel–Born expansion. The new combinatorics and the U-V estimates then seamlessly conclude the $H^{1}$ unconditional uniqueness for the NLS under the infinite-hierarchy framework. This work establishes a unified scheme to prove $H^{1}$ uniqueness for the $ \mathbb {R}^{3}/\mathbb {R}^{4}/\mathbb {T}^{3}/\mathbb {T}^{4}$ energy-critical Gross–Pitaevskii hierarchies and thus the corresponding NLS.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.