Ming En Koh , Mark Wong Kei Fong , Eddie Yin Kwee Ng
{"title":"Aqua3DNet: Real-time 3D pose estimation of livestock in aquaculture by monocular machine vision","authors":"Ming En Koh , Mark Wong Kei Fong , Eddie Yin Kwee Ng","doi":"10.1016/j.aquaeng.2023.102367","DOIUrl":null,"url":null,"abstract":"<div><p>We present a low-cost monocular 3D position estimation method for perception in aquaculture monitoring. Video surveillance of aquaculture has many advantages but given the size of farms and the complexity of their habitats, it is not feasible for farmers to continuously monitor fish health. We formulate a novel end-to-end deep visual learning pipeline called Aqua3DNet that estimates fish pose using a bottom-up approach to detect and assign key features in one pass. In addition, a depth estimation model using Saliency Object Detection (SOD) masks is implemented to track the 3D position of the fish over time, which is used in this paper to create 3D density heat maps of the fish. The evaluation of the algorithm's performance shows that the detection accuracy reaches 80.63%, the F1 score reaches 87.34%, and the frames per second (fps) reaches 5.12. Aqua3DNet achieves comparable performance to other aquaculture-based computer vision and depth estimation models, with minimal decrease in speed despite the synthesis of the two models.</p></div>","PeriodicalId":8120,"journal":{"name":"Aquacultural Engineering","volume":"103 ","pages":"Article 102367"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquacultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144860923000547","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We present a low-cost monocular 3D position estimation method for perception in aquaculture monitoring. Video surveillance of aquaculture has many advantages but given the size of farms and the complexity of their habitats, it is not feasible for farmers to continuously monitor fish health. We formulate a novel end-to-end deep visual learning pipeline called Aqua3DNet that estimates fish pose using a bottom-up approach to detect and assign key features in one pass. In addition, a depth estimation model using Saliency Object Detection (SOD) masks is implemented to track the 3D position of the fish over time, which is used in this paper to create 3D density heat maps of the fish. The evaluation of the algorithm's performance shows that the detection accuracy reaches 80.63%, the F1 score reaches 87.34%, and the frames per second (fps) reaches 5.12. Aqua3DNet achieves comparable performance to other aquaculture-based computer vision and depth estimation models, with minimal decrease in speed despite the synthesis of the two models.
期刊介绍:
Aquacultural Engineering is concerned with the design and development of effective aquacultural systems for marine and freshwater facilities. The journal aims to apply the knowledge gained from basic research which potentially can be translated into commercial operations.
Problems of scale-up and application of research data involve many parameters, both physical and biological, making it difficult to anticipate the interaction between the unit processes and the cultured animals. Aquacultural Engineering aims to develop this bioengineering interface for aquaculture and welcomes contributions in the following areas:
– Engineering and design of aquaculture facilities
– Engineering-based research studies
– Construction experience and techniques
– In-service experience, commissioning, operation
– Materials selection and their uses
– Quantification of biological data and constraints