Dirichlet vs Neumann

IF 0.7 3区 数学 Q2 MATHEMATICS
E. Marušić‐Paloka
{"title":"Dirichlet vs Neumann","authors":"E. Marušić‐Paloka","doi":"10.1017/S0013091522000487","DOIUrl":null,"url":null,"abstract":"Abstract We study the asymptotic behaviour of the periodically mixed Zaremba problem. We cover the part of the boundary by a chess board with a small period (square size) $\\varepsilon$ and impose the Dirichlet condition on black and the Neumann condition on white squares. As $\\varepsilon \\to 0$, we get the effective boundary condition which is always of the Dirichlet type. The Dirichlet data on the boundary, however, depend on the ratio between the magnitudes of the two boundary values.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"65 1","pages":"1063 - 1074"},"PeriodicalIF":0.7000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091522000487","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We study the asymptotic behaviour of the periodically mixed Zaremba problem. We cover the part of the boundary by a chess board with a small period (square size) $\varepsilon$ and impose the Dirichlet condition on black and the Neumann condition on white squares. As $\varepsilon \to 0$, we get the effective boundary condition which is always of the Dirichlet type. The Dirichlet data on the boundary, however, depend on the ratio between the magnitudes of the two boundary values.
狄利克雷和诺伊曼
研究了周期混合Zaremba问题的渐近性质。我们用一个小周期(正方形大小)的棋盘覆盖部分边界,并在黑色正方形上施加狄利克雷条件,在白色正方形上施加诺伊曼条件。当varepsilon趋于0时,我们得到的有效边界条件总是Dirichlet型的。然而,边界上的狄利克雷数据取决于两个边界值的大小之比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信