Proposing a Feature Selection Approach to Predict Learners' Performance in Virtual Learning Environments (VLEs)

Q1 Social Sciences
Miami Abdul Aziz Al-Masoudy, Ahmed Al-Azawei
{"title":"Proposing a Feature Selection Approach to Predict Learners' Performance in Virtual Learning Environments (VLEs)","authors":"Miami Abdul Aziz Al-Masoudy, Ahmed Al-Azawei","doi":"10.3991/ijet.v18i11.35405","DOIUrl":null,"url":null,"abstract":"Predicting students' success in virtual learning environments (VLEs) can help educational institutions improve their online services and provide efficient online learning content. However, this cannot be achieved without identifying the possible effective features that have a high influence on students' performance. This research aims at providing an early prediction approach to learners' achievement on VLEs. A new feature selection method called a Developed Sequential Feature Selection (D-SFS) was proposed to identify the most effective features that could highly enhance prediction accuracy. The findings suggest that the D-SFS method outperforms the original Sequential Forward Selection (SFS) approach. The prediction accuracy using the SFS method was 92.466% with seventeen features, whereas the proposed approach successfully predicted 92.518% of students' performance using seven features only. Such outcomes highlight the importance of implementing a feature selection method to enhance prediction accuracy, decrease the number of features, and reduce the model's time and execution complexity.","PeriodicalId":47933,"journal":{"name":"International Journal of Emerging Technologies in Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Technologies in Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijet.v18i11.35405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting students' success in virtual learning environments (VLEs) can help educational institutions improve their online services and provide efficient online learning content. However, this cannot be achieved without identifying the possible effective features that have a high influence on students' performance. This research aims at providing an early prediction approach to learners' achievement on VLEs. A new feature selection method called a Developed Sequential Feature Selection (D-SFS) was proposed to identify the most effective features that could highly enhance prediction accuracy. The findings suggest that the D-SFS method outperforms the original Sequential Forward Selection (SFS) approach. The prediction accuracy using the SFS method was 92.466% with seventeen features, whereas the proposed approach successfully predicted 92.518% of students' performance using seven features only. Such outcomes highlight the importance of implementing a feature selection method to enhance prediction accuracy, decrease the number of features, and reduce the model's time and execution complexity.
提出一种特征选择方法来预测虚拟学习环境中学习者的表现
预测学生在虚拟学习环境(VLEs)中的成功可以帮助教育机构改善其在线服务,并提供高效的在线学习内容。然而,如果不确定可能对学生的表现有很大影响的有效特征,这是不可能实现的。本研究旨在为学习者的学习成绩提供一种早期预测方法。提出了一种新的特征选择方法,即开发序列特征选择(D-SFS),以识别最有效的特征,从而大大提高预测精度。结果表明,D-SFS方法优于原来的顺序前向选择(SFS)方法。使用SFS方法预测17个特征的准确率为92.466%,而仅使用7个特征的方法预测准确率为92.518%。这些结果突出了实现特征选择方法的重要性,以提高预测精度,减少特征数量,降低模型的时间和执行复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
352
审稿时长
12 weeks
期刊介绍: This interdisciplinary journal focuses on the exchange of relevant trends and research results and presents practical experiences gained while developing and testing elements of technology enhanced learning. It bridges the gap between pure academic research journals and more practical publications. So it covers the full range from research, application development to experience reports and product descriptions. Fields of interest include, but are not limited to: -Software / Distributed Systems -Knowledge Management -Semantic Web -MashUp Technologies -Platforms and Content Authoring -New Learning Models and Applications -Pedagogical and Psychological Issues -Trust / Security -Internet Applications -Networked Tools -Mobile / wireless -Electronics -Visualisation -Bio- / Neuroinformatics -Language /Speech -Collaboration Tools / Collaborative Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信