Effect of flow structures on the transport of gametes in broadcast-spawning sea urchin

IF 2.4 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL
Hojung You , Hyoungchul Park , Jin Hwan Hwang
{"title":"Effect of flow structures on the transport of gametes in broadcast-spawning sea urchin","authors":"Hojung You ,&nbsp;Hyoungchul Park ,&nbsp;Jin Hwan Hwang","doi":"10.1016/j.jher.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Broadcasted fertilization for the reproduction of invertebrates is accomplished through a complicated interaction between spawned gametes and the surrounding flows. Most gametes encounter each other in the vicinity of the sea urchin body where unique flow structures develop, and so analysis of local flow characteristics allows us to better understand the effect of flow on the fertilization process. This study applied a Lagrangian framework based on computational fluid dynamics to estimate the fertilization rate of eggs in a range of flow velocities (0.025–0.2 m/s) and the fertilization rate was the highest at <em>U</em> = 0.1 m/s, which is an intermediate flow speed. Among the four classified sub-zones, such as the aboral surface, wake, substrate, and water column, fertilization occurred most frequently in the wake and substrate regions. The relationship between fertilization rate and flow structures was investigated using three parameters: 1) standardized Morisita index to quantify the pattern of gamete distribution, 2) length of the recirculation zone to specify the areas where the eggs are most frequently fertilized, and 3) integral scale to estimate the dimension of vortex structures downstream. The results of this study show that the fertilization rate is higher inside the recirculation zone, especially when strong vortex structures are observed because the flow provides a favorable condition for the gametes to aggregate and collide with each other.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"50 ","pages":"Pages 1-12"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644323000266","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Broadcasted fertilization for the reproduction of invertebrates is accomplished through a complicated interaction between spawned gametes and the surrounding flows. Most gametes encounter each other in the vicinity of the sea urchin body where unique flow structures develop, and so analysis of local flow characteristics allows us to better understand the effect of flow on the fertilization process. This study applied a Lagrangian framework based on computational fluid dynamics to estimate the fertilization rate of eggs in a range of flow velocities (0.025–0.2 m/s) and the fertilization rate was the highest at U = 0.1 m/s, which is an intermediate flow speed. Among the four classified sub-zones, such as the aboral surface, wake, substrate, and water column, fertilization occurred most frequently in the wake and substrate regions. The relationship between fertilization rate and flow structures was investigated using three parameters: 1) standardized Morisita index to quantify the pattern of gamete distribution, 2) length of the recirculation zone to specify the areas where the eggs are most frequently fertilized, and 3) integral scale to estimate the dimension of vortex structures downstream. The results of this study show that the fertilization rate is higher inside the recirculation zone, especially when strong vortex structures are observed because the flow provides a favorable condition for the gametes to aggregate and collide with each other.

水流结构对广播产卵海胆配子运输的影响
无脊椎动物繁殖的广播受精是通过繁殖的配子和周围水流之间的复杂相互作用实现的。大多数配子在海胆体附近相遇,在那里形成了独特的流动结构,因此分析局部流动特征可以让我们更好地了解流动对受精过程的影响。这项研究应用了基于计算流体动力学的拉格朗日框架来估计鸡蛋在一定流速(0.025–0.2 m/s)范围内的受精率,受精率在U=0.1 m/s时最高,这是一个中间流速。在人工流产表面、尾流、基质和水柱四个亚区中,受精最频繁发生在尾流和基质区。使用三个参数研究了受精率和流动结构之间的关系:1)标准化Morisita指数,用于量化配子分布模式;2)再循环区的长度,用于指定卵子最频繁受精的区域;3)积分尺度,用于估计下游涡流结构的尺寸。这项研究的结果表明,再循环区内的受精率更高,尤其是当观察到强烈的旋涡结构时,因为流动为配子聚集和相互碰撞提供了有利的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydro-environment Research
Journal of Hydro-environment Research ENGINEERING, CIVIL-ENVIRONMENTAL SCIENCES
CiteScore
5.80
自引率
0.00%
发文量
34
审稿时长
98 days
期刊介绍: The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers. Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信