Bayesian stopping

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Igor Douven
{"title":"Bayesian stopping","authors":"Igor Douven","doi":"10.1016/j.jmp.2023.102794","DOIUrl":null,"url":null,"abstract":"<div><p>Stopping rules are criteria for determining when data collection can or should be terminated, allowing for inferences to be made. While traditionally discussed in the context of classical statistics, Bayesian<span> statisticians have also begun exploring stopping rules. Kruschke proposed a Bayesian stopping rule utilizing the concept of Highest Density Interval, where data collection can cease once enough probability mass (or density) accumulates in a sufficiently small region of parameter space. This paper presents an alternative to Kruschke’s approach, introducing the novel concept of Relative Importance Interval and considering the distribution of probability mass within parameter space. Using computer simulations, we compare these proposals to each other and to the widely-used Bayes factor-based stopping method. Our results do not indicate a single superior proposal but instead suggest that different stopping rules may be appropriate under different circumstances.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Stopping rules are criteria for determining when data collection can or should be terminated, allowing for inferences to be made. While traditionally discussed in the context of classical statistics, Bayesian statisticians have also begun exploring stopping rules. Kruschke proposed a Bayesian stopping rule utilizing the concept of Highest Density Interval, where data collection can cease once enough probability mass (or density) accumulates in a sufficiently small region of parameter space. This paper presents an alternative to Kruschke’s approach, introducing the novel concept of Relative Importance Interval and considering the distribution of probability mass within parameter space. Using computer simulations, we compare these proposals to each other and to the widely-used Bayes factor-based stopping method. Our results do not indicate a single superior proposal but instead suggest that different stopping rules may be appropriate under different circumstances.

贝叶斯停止
停止规则是确定何时可以或应该终止数据收集的标准,允许进行推断。虽然传统上在经典统计学的背景下讨论,贝叶斯统计学家也开始探索停止规则。Kruschke利用最高密度区间的概念提出了贝叶斯停止规则,一旦足够的概率质量(或密度)在足够小的参数空间区域内积累,数据收集就可以停止。本文提出了一种替代Kruschke方法的方法,引入了相对重要区间的新概念,并考虑了概率质量在参数空间中的分布。通过计算机模拟,我们将这些建议相互比较,并与广泛使用的贝叶斯因子停止方法进行比较。我们的研究结果并不表明单一的优越建议,而是表明不同的停止规则可能适用于不同的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信