Knowledge Cross-Distillation for Membership Privacy

R. Chourasia, Batnyam Enkhtaivan, Kunihiro Ito, Junki Mori, Isamu Teranishi, Hikaru Tsuchida
{"title":"Knowledge Cross-Distillation for Membership Privacy","authors":"R. Chourasia, Batnyam Enkhtaivan, Kunihiro Ito, Junki Mori, Isamu Teranishi, Hikaru Tsuchida","doi":"10.2478/popets-2022-0050","DOIUrl":null,"url":null,"abstract":"Abstract A membership inference attack (MIA) poses privacy risks for the training data of a machine learning model. With an MIA, an attacker guesses if the target data are a member of the training dataset. The state-of-the-art defense against MIAs, distillation for membership privacy (DMP), requires not only private data for protection but a large amount of unlabeled public data. However, in certain privacy-sensitive domains, such as medicine and finance, the availability of public data is not guaranteed. Moreover, a trivial method for generating public data by using generative adversarial networks significantly decreases the model accuracy, as reported by the authors of DMP. To overcome this problem, we propose a novel defense against MIAs that uses knowledge distillation without requiring public data. Our experiments show that the privacy protection and accuracy of our defense are comparable to those of DMP for the benchmark tabular datasets used in MIA research, Purchase100 and Texas100, and our defense has a much better privacy-utility trade-off than those of the existing defenses that also do not use public data for the image dataset CIFAR10.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2022 1","pages":"362 - 377"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract A membership inference attack (MIA) poses privacy risks for the training data of a machine learning model. With an MIA, an attacker guesses if the target data are a member of the training dataset. The state-of-the-art defense against MIAs, distillation for membership privacy (DMP), requires not only private data for protection but a large amount of unlabeled public data. However, in certain privacy-sensitive domains, such as medicine and finance, the availability of public data is not guaranteed. Moreover, a trivial method for generating public data by using generative adversarial networks significantly decreases the model accuracy, as reported by the authors of DMP. To overcome this problem, we propose a novel defense against MIAs that uses knowledge distillation without requiring public data. Our experiments show that the privacy protection and accuracy of our defense are comparable to those of DMP for the benchmark tabular datasets used in MIA research, Purchase100 and Texas100, and our defense has a much better privacy-utility trade-off than those of the existing defenses that also do not use public data for the image dataset CIFAR10.
面向成员隐私的知识交叉蒸馏
隶属关系推理攻击(MIA)会给机器学习模型的训练数据带来隐私风险。使用MIA,攻击者可以猜测目标数据是否是训练数据集的成员。针对mia的最先进的防御,即成员隐私蒸馏(DMP),不仅需要保护私人数据,还需要大量未标记的公共数据。然而,在某些隐私敏感的领域,如医药和金融,公共数据的可用性得不到保证。此外,正如DMP的作者所报道的那样,使用生成式对抗网络生成公共数据的一种简单方法显着降低了模型的准确性。为了克服这个问题,我们提出了一种新的防御MIAs的方法,该方法使用知识蒸馏而不需要公共数据。我们的实验表明,对于MIA研究、Purchase100和Texas100中使用的基准表格数据集,我们的防御的隐私保护和准确性与DMP相当,并且我们的防御比现有的防御具有更好的隐私-效用权衡,这些防御也不使用图像数据集CIFAR10的公共数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信