Modeling Developable Surfaces using Quintic Bézier and Hermite Curves

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
K. .
{"title":"Modeling Developable Surfaces using Quintic Bézier and Hermite Curves","authors":"K. .","doi":"10.33889/ijmems.2023.8.5.053","DOIUrl":null,"url":null,"abstract":"The nature of the developable surfaces has similarities to the industrial materials that are not amenable to stretching. Regarding the benefit, the developable surfaces are widely used to model plat-metal-based industry products such as automobiles, ship hulls, and ducts. For this reason, we introduce a new approach for designing developable surfaces limited by two space curves. The method consists of these steps. First, we define a generalized cone and a cylinder surface by posing restrictions: a fixed summit point of the cone has to be outside a plane; a static nonzero constant vector is unparallel to the plane; and two quintic Bézier curves are placed on the different sides of the plane. Second, computing the control points on the plane is determined by the intersection between the control lines of the cone/cylinder surface and the plane. Third, using these obtained control points, we evaluate the required boundary curves profile and the shape of the developable Bézier surfaces, that are limited by these quintic Bézier curves. Finally, we also apply this method to design the developable Hermite surfaces. As a result, this introduced method can provide the equations and procedures for modeling developable surfaces with boundary curves in space. Also, it is useable to design these surfaces in many arches and shapes. Moreover, this method is effective for modifying and adjusting the desired boundary curves profile of the surfaces.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33889/ijmems.2023.8.5.053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The nature of the developable surfaces has similarities to the industrial materials that are not amenable to stretching. Regarding the benefit, the developable surfaces are widely used to model plat-metal-based industry products such as automobiles, ship hulls, and ducts. For this reason, we introduce a new approach for designing developable surfaces limited by two space curves. The method consists of these steps. First, we define a generalized cone and a cylinder surface by posing restrictions: a fixed summit point of the cone has to be outside a plane; a static nonzero constant vector is unparallel to the plane; and two quintic Bézier curves are placed on the different sides of the plane. Second, computing the control points on the plane is determined by the intersection between the control lines of the cone/cylinder surface and the plane. Third, using these obtained control points, we evaluate the required boundary curves profile and the shape of the developable Bézier surfaces, that are limited by these quintic Bézier curves. Finally, we also apply this method to design the developable Hermite surfaces. As a result, this introduced method can provide the equations and procedures for modeling developable surfaces with boundary curves in space. Also, it is useable to design these surfaces in many arches and shapes. Moreover, this method is effective for modifying and adjusting the desired boundary curves profile of the surfaces.
用五次bsamizier曲线和Hermite曲线建模可展曲面
可显影表面的性质与不适合拉伸的工业材料相似。就效益而言,可展曲面被广泛用于为汽车、船体和管道等基于金属板的工业产品建模。为此,我们介绍了一种设计受两条空间曲线限制的可展曲面的新方法。该方法由以下步骤组成。首先,我们通过提出限制条件来定义广义圆锥和柱面:圆锥的固定顶点必须在平面外;静态非零常向量与平面不平行;并且两条五次Bézier曲线被放置在平面的不同侧上。其次,平面上的控制点的计算是由圆锥体/圆柱体表面的控制线与平面之间的交点确定的。第三,使用这些获得的控制点,我们评估了所需的边界曲线轮廓和受这些五次Bézier曲线限制的可展Bézier曲面的形状。最后,我们还将这种方法应用于可展Hermite曲面的设计。因此,该方法可以提供在空间中用边界曲线建模可展曲面的方程和程序。此外,可以将这些表面设计成许多拱形和形状。此外,该方法对于修改和调整所需的曲面边界曲线轮廓是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
6.20%
发文量
57
审稿时长
20 weeks
期刊介绍: IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信