Ultra-efficient and parameter-free computation of submicron thermal transport with phonon Boltzmann transport equation

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
{"title":"Ultra-efficient and parameter-free computation of submicron thermal transport with phonon Boltzmann transport equation","authors":"","doi":"10.1016/j.fmre.2022.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding thermal transport at the submicron scale is crucial for engineering applications, especially in the thermal management of electronics and tailoring the thermal conductivity of thermoelectric materials. At the submicron scale, the macroscopic heat diffusion equation is no longer valid and the phonon Boltzmann transport equation (BTE) becomes the governing equation for thermal transport. However, previous thermal simulations based on the phonon BTE have two main limitations: relying on empirical parameters and prohibitive computational costs. Therefore, the phonon BTE is commonly used for qualitatively studying the non-Fourier thermal transport phenomena of toy problems. In this work, we demonstrate an ultra-efficient and parameter-free computational method of the phonon BTE to achieve quantitatively accurate thermal simulation for realistic materials and devices. By properly integrating the phonon properties from first-principles calculations, our method does not rely on empirical material properties input. It can be generally applicable for different materials and the predicted results can match well with experimental results. Moreover, by developing a suitable ensemble of advanced numerical algorithms, our method exhibits superior numerical efficiency. The full-scale (from ballistic to diffusive) thermal simulation of a 3-dimensional fin field-effect transistor with 13 million degrees of freedom, which is prohibitive for existing phonon BTE solvers even on supercomputers, can now be completed within two hours on a single personal computer. Our method makes it possible to achieve the predictive design of realistic nanostructures for the desired thermal conductivity. It also enables accurately resolving the temperature profiles at the transistor level, which helps in better understanding the self-heating effect of electronics.</p></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667325822002758/pdfft?md5=2779f045efa2512132f8bfee8d428040&pid=1-s2.0-S2667325822002758-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325822002758","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding thermal transport at the submicron scale is crucial for engineering applications, especially in the thermal management of electronics and tailoring the thermal conductivity of thermoelectric materials. At the submicron scale, the macroscopic heat diffusion equation is no longer valid and the phonon Boltzmann transport equation (BTE) becomes the governing equation for thermal transport. However, previous thermal simulations based on the phonon BTE have two main limitations: relying on empirical parameters and prohibitive computational costs. Therefore, the phonon BTE is commonly used for qualitatively studying the non-Fourier thermal transport phenomena of toy problems. In this work, we demonstrate an ultra-efficient and parameter-free computational method of the phonon BTE to achieve quantitatively accurate thermal simulation for realistic materials and devices. By properly integrating the phonon properties from first-principles calculations, our method does not rely on empirical material properties input. It can be generally applicable for different materials and the predicted results can match well with experimental results. Moreover, by developing a suitable ensemble of advanced numerical algorithms, our method exhibits superior numerical efficiency. The full-scale (from ballistic to diffusive) thermal simulation of a 3-dimensional fin field-effect transistor with 13 million degrees of freedom, which is prohibitive for existing phonon BTE solvers even on supercomputers, can now be completed within two hours on a single personal computer. Our method makes it possible to achieve the predictive design of realistic nanostructures for the desired thermal conductivity. It also enables accurately resolving the temperature profiles at the transistor level, which helps in better understanding the self-heating effect of electronics.

Abstract Image

基于声子玻尔兹曼输运方程的亚微米热输运超高效无参数计算
了解亚微米尺度的热传输对于工程应用至关重要,尤其是在电子设备的热管理和热电材料的热导率定制方面。在亚微米尺度上,宏观热扩散方程不再有效,声子玻尔兹曼输运方程(BTE)成为热输运的支配方程。然而,以往基于声子 BTE 的热模拟有两个主要局限:依赖经验参数和过高的计算成本。因此,声子 BTE 通常用于定性研究玩具问题的非傅里叶热传输现象。在这项工作中,我们展示了一种超高效、无参数的声子 BTE 计算方法,以实现对现实材料和器件的定量精确热模拟。通过对第一原理计算中的声子特性进行适当积分,我们的方法不依赖于经验材料特性输入。它可以普遍适用于不同的材料,而且预测结果与实验结果非常吻合。此外,通过开发合适的先进数值算法组合,我们的方法表现出卓越的数值效率。对具有 1,300 万个自由度的三维鳍式场效应晶体管进行全尺度(从弹道到扩散)热模拟,即使在超级计算机上也是现有声子 BTE 求解器无法完成的,而现在在一台个人计算机上只需两小时就能完成。我们的方法使预测性设计出所需热导率的现实纳米结构成为可能。它还能准确解析晶体管级的温度曲线,有助于更好地理解电子器件的自热效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信