Prismatic Dieudonné Theory

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Johannes Anschütz, Arthur-César Le Bras
{"title":"Prismatic Dieudonné Theory","authors":"Johannes Anschütz, Arthur-César Le Bras","doi":"10.1017/fmp.2022.22","DOIUrl":null,"url":null,"abstract":"Abstract We define, for each quasisyntomic ring R (in the sense of Bhatt et al., Publ. Math. IHES 129 (2019), 199–310), a category \n$\\mathrm {DM}^{\\mathrm {adm}}(R)$\n of admissible prismatic Dieudonné crystals over R and a functor from p-divisible groups over R to \n$\\mathrm {DM}^{\\mathrm {adm}}(R)$\n . We prove that this functor is an antiequivalence. Our main cohomological tool is the prismatic formalism recently developed by Bhatt and Scholze.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2022.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 21

Abstract

Abstract We define, for each quasisyntomic ring R (in the sense of Bhatt et al., Publ. Math. IHES 129 (2019), 199–310), a category $\mathrm {DM}^{\mathrm {adm}}(R)$ of admissible prismatic Dieudonné crystals over R and a functor from p-divisible groups over R to $\mathrm {DM}^{\mathrm {adm}}(R)$ . We prove that this functor is an antiequivalence. Our main cohomological tool is the prismatic formalism recently developed by Bhatt and Scholze.
棱镜理论
在Bhatt et al., Publ.的意义上,我们定义了每个准同音环R (数学。1 . R上可容许的棱镜diudonn晶体的范畴$\mathrm {DM}^{\mathrm {adm}}(R)$和R上p-可分群到$\mathrm {DM}^{\mathrm {adm}}(R)$的函子[j] .物理学报,129(2019),199-310]。我们证明了这个函子是一个反等价的。我们主要的上同调工具是Bhatt和Scholze最近开发的棱柱形形式论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信