Boomerang uniformity of power permutations and algebraic curves over 𝔽2n

IF 0.5 4区 数学 Q3 MATHEMATICS
Sihem Mesnager, F. Özbudak
{"title":"Boomerang uniformity of power permutations and algebraic curves over 𝔽2n","authors":"Sihem Mesnager, F. Özbudak","doi":"10.1515/advgeom-2022-0026","DOIUrl":null,"url":null,"abstract":"Abstract We obtain the Boomerang Connectivity Table of power permutations F(x)=x2m−1 of F2n $F(x)={{x}^{{{2}^{m}}-1}}\\text{ }\\!\\!~\\!\\!\\text{ of }\\!\\!~\\!\\!\\text{ }{{\\mathbb{F}}_{{{2}^{n}}}}$with m ∈ { 3,n−12,n+12,n−2 }. $\\left\\{ 3,\\frac{n-1}{2},\\frac{n+1}{2},n-2 \\right\\}.$In particular, we obtain the Boomerang uniformity and the Boomerang uniformity set of F(x) at b∈F2n∖F2. $F(x)\\text{ }\\!\\!~\\!\\!\\text{ at }\\!\\!~\\!\\!\\text{ }b\\in {{\\mathbb{F}}_{{{2}^{n}}}}\\setminus {{\\mathbb{F}}_{2}}.$Moreover we determine the complete Boomerang distribution spectrum of F(x) using the number of rational points of certain concrete algebraic curves over F2n. ${{\\mathbb{F}}_{{{2}^{n}}}}.$We also determine the distribution spectra of Boomerang uniformities explicitly.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"23 1","pages":"107 - 134"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2022-0026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We obtain the Boomerang Connectivity Table of power permutations F(x)=x2m−1 of F2n $F(x)={{x}^{{{2}^{m}}-1}}\text{ }\!\!~\!\!\text{ of }\!\!~\!\!\text{ }{{\mathbb{F}}_{{{2}^{n}}}}$with m ∈ { 3,n−12,n+12,n−2 }. $\left\{ 3,\frac{n-1}{2},\frac{n+1}{2},n-2 \right\}.$In particular, we obtain the Boomerang uniformity and the Boomerang uniformity set of F(x) at b∈F2n∖F2. $F(x)\text{ }\!\!~\!\!\text{ at }\!\!~\!\!\text{ }b\in {{\mathbb{F}}_{{{2}^{n}}}}\setminus {{\mathbb{F}}_{2}}.$Moreover we determine the complete Boomerang distribution spectrum of F(x) using the number of rational points of certain concrete algebraic curves over F2n. ${{\mathbb{F}}_{{{2}^{n}}}}.$We also determine the distribution spectra of Boomerang uniformities explicitly.
幂置换的Boomerang一致性与上的代数曲线𝔽2n
得到了F2n $F(x)={{x}^{{{2}^{m}}-1}}\text{ }\!\!~\!\!\text{ of }\!\!~\!\!\text{ }{{\mathbb{F}}_{{{2}^{n}}}}$中m∈{3,n−12,n+12,n−2的幂置换F(x)=x2m−}1的回旋连通性表。$\left\{ 3,\frac{n-1}{2},\frac{n+1}{2},n-2 \right\}.$特别地,我们得到了F(x)在b∈F2n∈F2处的Boomerang均匀性和Boomerang均匀性集。$F(x)\text{ }\!\!~\!\!\text{ at }\!\!~\!\!\text{ }b\in {{\mathbb{F}}_{{{2}^{n}}}}\setminus {{\mathbb{F}}_{2}}.$此外,我们还利用F2n上某些具体代数曲线的有理点数确定了F(x)的完整回旋镖分布谱。${{\mathbb{F}}_{{{2}^{n}}}}.$我们还明确地确定了回飞镖均匀性的分布谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信