Implementation of Random Forest on Face Recognition Using Isomap Features

R. Kosasih, A. Fahrurozi, D. Riminarsih
{"title":"Implementation of Random Forest on Face Recognition Using Isomap Features","authors":"R. Kosasih, A. Fahrurozi, D. Riminarsih","doi":"10.24114/cess.v7i2.34498","DOIUrl":null,"url":null,"abstract":"Sistem pengenalan wajah merupakan salah satu bidang yang digunakan untuk mengenali wajah seseorang. Dalam penelitian ini, data yang dikumpulkan merupakan data citra wajah yang terdiri dari 24 citra dengan komposisi 6 orang dan tiap orang memiliki 4 citra dengan berbagai ekspresi. Untuk mengenali wajah tersebut, dilakukan ekstraksi fitur wajah terlebih dahulu menggunakan metode isomap. Isomap merupakan metode reduksi dimensi yang dapat mereduksi dari dimensi tinggi menjadi fitur-fitur yang berdimensi rendah. Berdasarkan hasil ekstraksi diperoleh 4 fitur yang digunakan untuk mengklasifikasikan wajah. Untuk mengklasifikasikan wajah, digunakan algoritma random forest. Berdasarkan hasil penelitian diperoleh tingkat akurasi hasil klasifikasi sebesar 87,5%, nilai weighted average precision sebesar 81,25% dan nilai weighted average recall sebesar 87,5%.","PeriodicalId":53361,"journal":{"name":"CESS Journal of Computer Engineering System and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESS Journal of Computer Engineering System and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/cess.v7i2.34498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sistem pengenalan wajah merupakan salah satu bidang yang digunakan untuk mengenali wajah seseorang. Dalam penelitian ini, data yang dikumpulkan merupakan data citra wajah yang terdiri dari 24 citra dengan komposisi 6 orang dan tiap orang memiliki 4 citra dengan berbagai ekspresi. Untuk mengenali wajah tersebut, dilakukan ekstraksi fitur wajah terlebih dahulu menggunakan metode isomap. Isomap merupakan metode reduksi dimensi yang dapat mereduksi dari dimensi tinggi menjadi fitur-fitur yang berdimensi rendah. Berdasarkan hasil ekstraksi diperoleh 4 fitur yang digunakan untuk mengklasifikasikan wajah. Untuk mengklasifikasikan wajah, digunakan algoritma random forest. Berdasarkan hasil penelitian diperoleh tingkat akurasi hasil klasifikasi sebesar 87,5%, nilai weighted average precision sebesar 81,25% dan nilai weighted average recall sebesar 87,5%.
利用等高图特征实现随机森林人脸识别
面部识别系统是用来识别某人面部的区域之一。在这项研究中,收集的数据是由24张6人的图像组成的面部数据,每张图像有4张不同表情的图像。要识别该人脸,首先使用等值线图方法提取人脸特征。Isomap是一种降维方法,可以将高维特征降为低维特征。基于提取结果,得到了4个用于人脸分类的特征。使用随机森林算法对人脸进行分类。根据研究结果,分类结果的准确度为87.5%,加权平均准确度为81.25%,加权平均召回率为87.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
40
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信