R. V. Vander Wal, Madhu Singh, W. Bachalo, G. Payne, J. Manin, R. Howard
{"title":"Pulsed laser heating of diesel engine and turbojet combustor soot: Changes in nanostructure and implications","authors":"R. V. Vander Wal, Madhu Singh, W. Bachalo, G. Payne, J. Manin, R. Howard","doi":"10.1080/02786826.2023.2244548","DOIUrl":null,"url":null,"abstract":"Abstract Carbonaceous particulate produced by a diesel engine and turbojet engine combustor are analyzed by transmission electron microscopy (TEM) for differences in nanostructure before and after pulsed laser annealing. Soot is examined between low/high diesel engine torque and low/high turbojet engine thrust. Small differences in nascent nanostructure are magnified by the action of high-temperature annealing induced by pulsed laser heating. Lamellae length distributions show occurrence of graphitization while tortuosity analyses reveal lamellae straightening. Differences in internal particle structure (hollow shells versus internal graphitic ribbons) are interpreted as due to higher internal sp3 and O-atom content under the higher power conditions with hypothesized greater turbulence and resulting partial premixing. TEM in concert with fringe analyses reveal that a similar degree of annealing occurs in the primary particles in soot from both diesel engine and turbojet engine combustors—despite the aggregate and primary size differences between these sources. Implications of these results for source identification of the combustion particulate and for laser-induced incandescence (LII) measurements of concentration are discussed with inter-instrument comparison of soot mass from both diesel and turbojet soot sources. Graphical Abstract","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"57 1","pages":"1044 - 1056"},"PeriodicalIF":2.8000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02786826.2023.2244548","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Carbonaceous particulate produced by a diesel engine and turbojet engine combustor are analyzed by transmission electron microscopy (TEM) for differences in nanostructure before and after pulsed laser annealing. Soot is examined between low/high diesel engine torque and low/high turbojet engine thrust. Small differences in nascent nanostructure are magnified by the action of high-temperature annealing induced by pulsed laser heating. Lamellae length distributions show occurrence of graphitization while tortuosity analyses reveal lamellae straightening. Differences in internal particle structure (hollow shells versus internal graphitic ribbons) are interpreted as due to higher internal sp3 and O-atom content under the higher power conditions with hypothesized greater turbulence and resulting partial premixing. TEM in concert with fringe analyses reveal that a similar degree of annealing occurs in the primary particles in soot from both diesel engine and turbojet engine combustors—despite the aggregate and primary size differences between these sources. Implications of these results for source identification of the combustion particulate and for laser-induced incandescence (LII) measurements of concentration are discussed with inter-instrument comparison of soot mass from both diesel and turbojet soot sources. Graphical Abstract
期刊介绍:
Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation.
Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.