{"title":"Local scour around submerged angled spur dikes under ice cover","authors":"Guowei Li, Jueyi Sui, Sanaz Sediqi, Mauricio Dziedzic","doi":"10.1016/j.ijsrc.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Local scour is a phenomenon leading to the localized lowering of the channel bed due to the imbalance of sediment transport. As spur </span>dikes protrude into the natural channels, local scour could be triggered. Accurate estimation of local scour around spur dikes is crucial for the effectiveness of </span>erosion control<span><span> and prevention and habitat enhancement measures. In the current study, the correlations between the maximum scour depth and the overtopping ratio, spur dike dimensions, ice cover roughness, and grain size of the bed material are investigated. Under both open channel and ice-covered flow conditions, a variety of experiments were done in a large-scale outdoor flume with different experimental setups. The results revealed that the scour depths around submerged spur dikes increased with increases in the densimetric Froude number and the decreases in the overtopping ratio and alignment angle. The maximum scour depth around a submerged angled vertical wall spur dike is significantly affected by the presence of an ice cover on the water surface, namely, the rougher the cover, the deeper the scour hole. Based on data collected from the laboratory experiments, an existing maximum scour depth estimation equation has been modified to consider the influence of the cover condition and the </span>submergence level. The calculated results showed high accuracy in estimation of the measured data.</span></p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"38 6","pages":"Pages 781-793"},"PeriodicalIF":3.5000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627923000513","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Local scour is a phenomenon leading to the localized lowering of the channel bed due to the imbalance of sediment transport. As spur dikes protrude into the natural channels, local scour could be triggered. Accurate estimation of local scour around spur dikes is crucial for the effectiveness of erosion control and prevention and habitat enhancement measures. In the current study, the correlations between the maximum scour depth and the overtopping ratio, spur dike dimensions, ice cover roughness, and grain size of the bed material are investigated. Under both open channel and ice-covered flow conditions, a variety of experiments were done in a large-scale outdoor flume with different experimental setups. The results revealed that the scour depths around submerged spur dikes increased with increases in the densimetric Froude number and the decreases in the overtopping ratio and alignment angle. The maximum scour depth around a submerged angled vertical wall spur dike is significantly affected by the presence of an ice cover on the water surface, namely, the rougher the cover, the deeper the scour hole. Based on data collected from the laboratory experiments, an existing maximum scour depth estimation equation has been modified to consider the influence of the cover condition and the submergence level. The calculated results showed high accuracy in estimation of the measured data.
期刊介绍:
International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense.
The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.