C. McKenzie, Ivette Guzmán, C. Velasco‐Cruz, P. Bosland
{"title":"Photosynthetic Pigments Profiled in Capsicum Lutescens Mutants","authors":"C. McKenzie, Ivette Guzmán, C. Velasco‐Cruz, P. Bosland","doi":"10.21273/JASHS05025-20","DOIUrl":null,"url":null,"abstract":"Lutescens, or lutescent, plant mutants produce leaves that are abnormally light yellow-green compared with normal plants, and are observed in multiple species of Capsicum as well as other genera such as Zea, Oryza, and Oenothera. Previous investigations into the lutescent phenotype in Capsicum have focused on genetic and transcriptomic analyses, and comparatively little is known about the phytochemical constituents of the lutescent leaf phenotype. Previous research in similar lutescent mutants in Capsicum and Oryza species has attributed their pale yellow-green leaf color and poor vigor to deficient chloroplast development. A total of 25 accessions of Capsicum lutescens mutants were phenotyped and analyzed based on a multivariate approach, using ‘Jupiter’ bell pepper (Capsicum annuum) with normal green leaves as a contextual benchmark. Photosynthetic pigments from mutant leaves were extracted and analyzed using high-performance liquid chromatography (HPLC); reflectance of the leaf material was measured with a chromameter using the L*a*b* color space. The chlorophyll a (Chl a)/b (Chl b) ratio was greater in leaves of lutescens mutants than in ‘Jupiter’. Multivariate statistical analyses revealed all lutescent mutant accessions could be distinguished from the ‘Jupiter’ contextual benchmark by variables indicating poor chloroplast development and increased photooxidative stress in lutescent mutant accessions. The lutescent leaf phenotype was not found to be caused by elevated xanthophyll or decreased chlorophyll concentrations. Furthermore, multivariate analysis revealed the lutescent mutant phenotype to be variable, with a wide range of phenotypes clustered into four major groups.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/JASHS05025-20","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Lutescens, or lutescent, plant mutants produce leaves that are abnormally light yellow-green compared with normal plants, and are observed in multiple species of Capsicum as well as other genera such as Zea, Oryza, and Oenothera. Previous investigations into the lutescent phenotype in Capsicum have focused on genetic and transcriptomic analyses, and comparatively little is known about the phytochemical constituents of the lutescent leaf phenotype. Previous research in similar lutescent mutants in Capsicum and Oryza species has attributed their pale yellow-green leaf color and poor vigor to deficient chloroplast development. A total of 25 accessions of Capsicum lutescens mutants were phenotyped and analyzed based on a multivariate approach, using ‘Jupiter’ bell pepper (Capsicum annuum) with normal green leaves as a contextual benchmark. Photosynthetic pigments from mutant leaves were extracted and analyzed using high-performance liquid chromatography (HPLC); reflectance of the leaf material was measured with a chromameter using the L*a*b* color space. The chlorophyll a (Chl a)/b (Chl b) ratio was greater in leaves of lutescens mutants than in ‘Jupiter’. Multivariate statistical analyses revealed all lutescent mutant accessions could be distinguished from the ‘Jupiter’ contextual benchmark by variables indicating poor chloroplast development and increased photooxidative stress in lutescent mutant accessions. The lutescent leaf phenotype was not found to be caused by elevated xanthophyll or decreased chlorophyll concentrations. Furthermore, multivariate analysis revealed the lutescent mutant phenotype to be variable, with a wide range of phenotypes clustered into four major groups.
期刊介绍:
The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers.
The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as:
- Biotechnology
- Developmental Physiology
- Environmental Stress Physiology
- Genetics and Breeding
- Photosynthesis, Sources-Sink Physiology
- Postharvest Biology
- Seed Physiology
- Postharvest Biology
- Seed Physiology
- Soil-Plant-Water Relationships
- Statistics