{"title":"Robust importance sampling with adaptive winsorization","authors":"Paulo Orenstein","doi":"10.3150/21-bej1440","DOIUrl":null,"url":null,"abstract":"Importance sampling is a widely used technique to estimate properties of a distribution. The resulting estimator is unbiased but may have huge, potentially infinite, variance. This paper proposes trading-off some bias for variance by adaptively winsorizing the importance sampling estimator. The novel procedure is based on the Balancing Principle (or Lepskii’s Method). As a consequence, it offers a principled way to perform winsorization with finitesample guarantees in the form of an oracle inequality. In various examples, the proposed estimator is shown to have smaller mean squared error and mean absolute deviation than leading alternatives such as the traditional importance sampling estimator or winsorizing it via cross-validation.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-bej1440","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Importance sampling is a widely used technique to estimate properties of a distribution. The resulting estimator is unbiased but may have huge, potentially infinite, variance. This paper proposes trading-off some bias for variance by adaptively winsorizing the importance sampling estimator. The novel procedure is based on the Balancing Principle (or Lepskii’s Method). As a consequence, it offers a principled way to perform winsorization with finitesample guarantees in the form of an oracle inequality. In various examples, the proposed estimator is shown to have smaller mean squared error and mean absolute deviation than leading alternatives such as the traditional importance sampling estimator or winsorizing it via cross-validation.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.