{"title":"Mechanical behavior of single-layer graphdiyne via supersonic micro-projectile impact","authors":"Kailu Xiao , Qiuyun Yin , Xianqian Wu , Chenguang Huang","doi":"10.1016/j.nanoms.2021.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical behavior of single-layer graphdiyne (SLGDY) subjected to high-velocity micro-ballistic impacts is analyzed by molecular dynamics (MD) simulations. The ballistic limits of SLGDY is obtained for the first time. The temperature deterioration effects of the impact resistance are also investigated. The results show that the ballistic limits can reach 75.4% of single-layer graphene (SLGR) at about 1/2 density, leading to approximately the same specific energy absorption (SEA) as SLGR. The ballistic limits of SLGDY and SLGR with single atomic thickness agree with the predictions of macroscopic penetration limits equations, implying the applicability of continuum penetration theories for two-dimensional (2D) materials. In addition, the dynamic responses involving stress wave propagation, conic deformation, and damage evolution are investigated to illuminate the mechanisms of the dynamic energy dissipation. The superior impact resistance of SLGDY and SLGR can be attributed to both the ultra-fast elastic and conic waves and the excellent deformation capabilities. This study provides a deep understanding of the impact behavior of SLGDY, indicating it is a promising protective material.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"4 4","pages":"Pages 383-392"},"PeriodicalIF":9.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965121000945/pdfft?md5=54f0525f98d2e2114b3a41b6e1ebd741&pid=1-s2.0-S2589965121000945-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965121000945","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
The mechanical behavior of single-layer graphdiyne (SLGDY) subjected to high-velocity micro-ballistic impacts is analyzed by molecular dynamics (MD) simulations. The ballistic limits of SLGDY is obtained for the first time. The temperature deterioration effects of the impact resistance are also investigated. The results show that the ballistic limits can reach 75.4% of single-layer graphene (SLGR) at about 1/2 density, leading to approximately the same specific energy absorption (SEA) as SLGR. The ballistic limits of SLGDY and SLGR with single atomic thickness agree with the predictions of macroscopic penetration limits equations, implying the applicability of continuum penetration theories for two-dimensional (2D) materials. In addition, the dynamic responses involving stress wave propagation, conic deformation, and damage evolution are investigated to illuminate the mechanisms of the dynamic energy dissipation. The superior impact resistance of SLGDY and SLGR can be attributed to both the ultra-fast elastic and conic waves and the excellent deformation capabilities. This study provides a deep understanding of the impact behavior of SLGDY, indicating it is a promising protective material.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.