I. Trejo, Mehtap Lafci Büyükkahraman, H. Kojouharov
{"title":"MATHEMATICAL INSIGHTS INTO THE DYNAMICS OF INNATE IMMUNE RESPONSE DURING INFLAMMATION","authors":"I. Trejo, Mehtap Lafci Büyükkahraman, H. Kojouharov","doi":"10.1142/s0218339022500139","DOIUrl":null,"url":null,"abstract":"Innate immune system cells activate in response to infection and trigger an acute inflammatory reaction to restore tissue homeostasis and promote subsequent tissue repair. Their activation and functions must be very well regulated to avoid tissue damage, organ dysfunction, or even death. In this work, a new set of mathematical models is presented to examine the dynamics of the innate immune system response to tissue damage and provide further understanding of the role of the innate immune system during the early stages of an inflammatory response. Different damaged cells production functions are proposed to represent the effect of secondary tissue damage by the innate immune system. The stability and bifurcation analyses of the model reveal that there is an important threshold parameter that can be controlled in order to avoid sustained chronic inflammation and secure a successful healing outcome. A set of numerical simulations is also performed to support the presented theoretical results and demonstrate the medical applicability of the new mathematical model.","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339022500139","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Innate immune system cells activate in response to infection and trigger an acute inflammatory reaction to restore tissue homeostasis and promote subsequent tissue repair. Their activation and functions must be very well regulated to avoid tissue damage, organ dysfunction, or even death. In this work, a new set of mathematical models is presented to examine the dynamics of the innate immune system response to tissue damage and provide further understanding of the role of the innate immune system during the early stages of an inflammatory response. Different damaged cells production functions are proposed to represent the effect of secondary tissue damage by the innate immune system. The stability and bifurcation analyses of the model reveal that there is an important threshold parameter that can be controlled in order to avoid sustained chronic inflammation and secure a successful healing outcome. A set of numerical simulations is also performed to support the presented theoretical results and demonstrate the medical applicability of the new mathematical model.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.