Synthesis, In silico Molecular Docking Studies and antimicrobial evaluation of Some New Anthracene Derivatives Tagged with Arylidene, Pyridine, Oxazole, and Chromene Moieties as Promising Inhibitors of Bacterial DNA gyrase
{"title":"Synthesis, In silico Molecular Docking Studies and antimicrobial evaluation of Some New Anthracene Derivatives Tagged with Arylidene, Pyridine, Oxazole, and Chromene Moieties as Promising Inhibitors of Bacterial DNA gyrase","authors":"","doi":"10.33263/briac133.299","DOIUrl":null,"url":null,"abstract":"Here, A series of unprecedented derivatives of several heterocyclic compounds, including arylidene, pyridine, oxazole, and chromene, were designed with the anthracene moiety starting from 2-cyano-pyrroloanthracen acetamide (1). The chemical composition of all synthesized compounds was established by spectral analysis FT-IR, 1H-NMR, 13C-NMR, and Mass spectra. Also, the new compounds were docked to the active site of the DNA gyrase B chain enzyme, and the suitable binding interactions were displayed according to their bond lengths and conformational energies. The structure-activity relationship analysis showed that the antimicrobial activity could be modulated by the existence of anthracene moiety, electron-withdrawing groups, and amide linkage. In silico ADMET (absorption, metabolic, distribution, toxicity, and excretion) predictions for the compounds 1-7 were calculated to gain insight into their pharmacokinetics, safety, and drug-likeness profile. The antimicrobial investigations of all synthesized molecules were achieved against Gram-negative (Escherichia coli) and Gram-positive (Bacillus cereus) bacterial strains. Results indicated that the compounds exhibited promising activity against strains. Therefore, the newly hybrid anthracene molecules could serve as promising chemical scaffolds to develop upcoming drug candidates as antimicrobial agents.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac133.299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Here, A series of unprecedented derivatives of several heterocyclic compounds, including arylidene, pyridine, oxazole, and chromene, were designed with the anthracene moiety starting from 2-cyano-pyrroloanthracen acetamide (1). The chemical composition of all synthesized compounds was established by spectral analysis FT-IR, 1H-NMR, 13C-NMR, and Mass spectra. Also, the new compounds were docked to the active site of the DNA gyrase B chain enzyme, and the suitable binding interactions were displayed according to their bond lengths and conformational energies. The structure-activity relationship analysis showed that the antimicrobial activity could be modulated by the existence of anthracene moiety, electron-withdrawing groups, and amide linkage. In silico ADMET (absorption, metabolic, distribution, toxicity, and excretion) predictions for the compounds 1-7 were calculated to gain insight into their pharmacokinetics, safety, and drug-likeness profile. The antimicrobial investigations of all synthesized molecules were achieved against Gram-negative (Escherichia coli) and Gram-positive (Bacillus cereus) bacterial strains. Results indicated that the compounds exhibited promising activity against strains. Therefore, the newly hybrid anthracene molecules could serve as promising chemical scaffolds to develop upcoming drug candidates as antimicrobial agents.
期刊介绍:
Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.