Rigidity of Three-Dimensional Internal Waves with Constant Vorticity

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Robin Ming Chen, Lili Fan, Samuel Walsh, Miles H. Wheeler
{"title":"Rigidity of Three-Dimensional Internal Waves with Constant Vorticity","authors":"Robin Ming Chen,&nbsp;Lili Fan,&nbsp;Samuel Walsh,&nbsp;Miles H. Wheeler","doi":"10.1007/s00021-023-00816-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the structural implications of constant vorticity for steady three-dimensional internal water waves in a channel. It is known that in many physical regimes, water waves beneath vacuum that have constant vorticity are necessarily two dimensional. The situation is more subtle for internal waves traveling along the interface between two immiscible fluids. When the layers have the same density, there is a large class of explicit steady waves with constant vorticity that are three-dimensional in that the velocity field is pointing in one horizontal direction while the interface is an arbitrary function of the other horizontal variable. We prove the following rigidity result: every three-dimensional traveling internal wave with bounded velocity for which the vorticities in the upper and lower layers are nonzero, constant, and parallel must belong to this family. If the densities in each layer are distinct, then in fact the flow is fully two dimensional. The proof is accomplished using an entirely novel but largely elementary argument that draws connection to the problem of uniquely reconstructing a two-dimensional velocity field from the pressure.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00816-5.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00816-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

This paper studies the structural implications of constant vorticity for steady three-dimensional internal water waves in a channel. It is known that in many physical regimes, water waves beneath vacuum that have constant vorticity are necessarily two dimensional. The situation is more subtle for internal waves traveling along the interface between two immiscible fluids. When the layers have the same density, there is a large class of explicit steady waves with constant vorticity that are three-dimensional in that the velocity field is pointing in one horizontal direction while the interface is an arbitrary function of the other horizontal variable. We prove the following rigidity result: every three-dimensional traveling internal wave with bounded velocity for which the vorticities in the upper and lower layers are nonzero, constant, and parallel must belong to this family. If the densities in each layer are distinct, then in fact the flow is fully two dimensional. The proof is accomplished using an entirely novel but largely elementary argument that draws connection to the problem of uniquely reconstructing a two-dimensional velocity field from the pressure.

Abstract Image

具有常涡度的三维内波的刚度
本文研究了定涡度对通道内三维定常水波的结构意义。众所周知,在许多物理条件下,具有恒定涡度的真空下水波必然是二维的。当内波沿着两种不混相流体之间的界面传播时,情况就更加微妙了。当各层密度相同时,存在一大批具有定涡度的三维显式定常波,其速度场指向一个水平方向,而界面是另一个水平变量的任意函数。我们证明了以下刚性结果:凡是上下两层涡度非零、恒定且平行的有界速度的三维行内波都属于这一类。如果每一层的密度是不同的,那么实际上流动是完全二维的。这个证明是用一个全新但基本的论证来完成的,这个论证与用压力唯一地重建二维速度场的问题有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信