Robin Ming Chen, Lili Fan, Samuel Walsh, Miles H. Wheeler
{"title":"Rigidity of Three-Dimensional Internal Waves with Constant Vorticity","authors":"Robin Ming Chen, Lili Fan, Samuel Walsh, Miles H. Wheeler","doi":"10.1007/s00021-023-00816-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the structural implications of constant vorticity for steady three-dimensional internal water waves in a channel. It is known that in many physical regimes, water waves beneath vacuum that have constant vorticity are necessarily two dimensional. The situation is more subtle for internal waves traveling along the interface between two immiscible fluids. When the layers have the same density, there is a large class of explicit steady waves with constant vorticity that are three-dimensional in that the velocity field is pointing in one horizontal direction while the interface is an arbitrary function of the other horizontal variable. We prove the following rigidity result: every three-dimensional traveling internal wave with bounded velocity for which the vorticities in the upper and lower layers are nonzero, constant, and parallel must belong to this family. If the densities in each layer are distinct, then in fact the flow is fully two dimensional. The proof is accomplished using an entirely novel but largely elementary argument that draws connection to the problem of uniquely reconstructing a two-dimensional velocity field from the pressure.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00816-5.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00816-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
This paper studies the structural implications of constant vorticity for steady three-dimensional internal water waves in a channel. It is known that in many physical regimes, water waves beneath vacuum that have constant vorticity are necessarily two dimensional. The situation is more subtle for internal waves traveling along the interface between two immiscible fluids. When the layers have the same density, there is a large class of explicit steady waves with constant vorticity that are three-dimensional in that the velocity field is pointing in one horizontal direction while the interface is an arbitrary function of the other horizontal variable. We prove the following rigidity result: every three-dimensional traveling internal wave with bounded velocity for which the vorticities in the upper and lower layers are nonzero, constant, and parallel must belong to this family. If the densities in each layer are distinct, then in fact the flow is fully two dimensional. The proof is accomplished using an entirely novel but largely elementary argument that draws connection to the problem of uniquely reconstructing a two-dimensional velocity field from the pressure.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.