{"title":"Decolourization of synthetic dyes by laccase produced from Bacillus sp. NU2","authors":"C. E. Edoamodu, U. Nwodo","doi":"10.1080/13102818.2022.2053341","DOIUrl":null,"url":null,"abstract":"Abstract Advanced industrialization has caused an increase in the continuous discharge of hazardous effluents in the environment. This study evaluated the potential of the laccase synthesized by Bacillus sp. NU2 to degrade five synthetic dyes. Sawdust, wheat bran and peels of banana and tangerine were utilized as carbon sources for bacterial growth and laccase production. The produced crude enzyme was purified to homogeneity to determine its molecular weight. The kinetic activity of the purified laccase was determined using 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The toxicity of the laccase-treated dye solution was assessed on Bacillus sp. NU2 growth. The result showed optimum laccase yield from the tangerine peel medium. The purified laccase gave a specific activity of 349.94 U mg−1 and a molecular weight of 55 kDa, respectively. The purified laccase displayed a strong affinity for ABTS substrate with an enzyme activity of 31.21 U mg−1. It was optimum at 60 °C and pH 8, with catalytic efficiency (Kcat /Km ) of 23.93 mmol L−1. The decolourization effects on Congo Red, Methyl Orange, Remazol Brilliant Blue R, Reactive Blue 4 and Malachite Green were 87%, 70%, 65%, 63% and 51%, respectively. The toxicity assay of laccase degraded dyes on Bacillus sp. NU2 showed a growth reduction of 36.75% (Malachite Green), 12.57% (Congo Red), 17.19% (Methyl Orange), 38.41% (Remazol Brilliant Blue R) and 28.14% (Reactive Blue 4). The laccase produced by Bacillus sp. NU2 holds a high catalytic potential for the detoxification of dye effluents in an environmental system.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13102818.2022.2053341","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Advanced industrialization has caused an increase in the continuous discharge of hazardous effluents in the environment. This study evaluated the potential of the laccase synthesized by Bacillus sp. NU2 to degrade five synthetic dyes. Sawdust, wheat bran and peels of banana and tangerine were utilized as carbon sources for bacterial growth and laccase production. The produced crude enzyme was purified to homogeneity to determine its molecular weight. The kinetic activity of the purified laccase was determined using 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The toxicity of the laccase-treated dye solution was assessed on Bacillus sp. NU2 growth. The result showed optimum laccase yield from the tangerine peel medium. The purified laccase gave a specific activity of 349.94 U mg−1 and a molecular weight of 55 kDa, respectively. The purified laccase displayed a strong affinity for ABTS substrate with an enzyme activity of 31.21 U mg−1. It was optimum at 60 °C and pH 8, with catalytic efficiency (Kcat /Km ) of 23.93 mmol L−1. The decolourization effects on Congo Red, Methyl Orange, Remazol Brilliant Blue R, Reactive Blue 4 and Malachite Green were 87%, 70%, 65%, 63% and 51%, respectively. The toxicity assay of laccase degraded dyes on Bacillus sp. NU2 showed a growth reduction of 36.75% (Malachite Green), 12.57% (Congo Red), 17.19% (Methyl Orange), 38.41% (Remazol Brilliant Blue R) and 28.14% (Reactive Blue 4). The laccase produced by Bacillus sp. NU2 holds a high catalytic potential for the detoxification of dye effluents in an environmental system.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.