Phase transitions for the geodesic flow of a rank one surface with nonpositive curvature

Pub Date : 2021-01-05 DOI:10.1080/14689367.2021.1933914
K. Burns, J. Buzzi, T. Fisher, Noelle Sawyer
{"title":"Phase transitions for the geodesic flow of a rank one surface with nonpositive curvature","authors":"K. Burns, J. Buzzi, T. Fisher, Noelle Sawyer","doi":"10.1080/14689367.2021.1933914","DOIUrl":null,"url":null,"abstract":"We study the one parameter family of potential functions associated with the unstable Jacobian potential (or geometric potential) for the geodesic flow of a compact rank 1 surface of nonpositive curvature. For q<1, it is known that there is a unique equilibrium state associated with , and it has full support. For q>1 it is known that an invariant measure is an equilibrium state if and only if it is supported on the singular set. We study the critical value q = 1 and show that the ergodic equilibrium states are either the restriction to the regular set of the Liouville measure or measures supported on the singular set. In particular, when q = 1, there is a unique ergodic equilibrium state that gives positive measure to the regular set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14689367.2021.1933914","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2021.1933914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study the one parameter family of potential functions associated with the unstable Jacobian potential (or geometric potential) for the geodesic flow of a compact rank 1 surface of nonpositive curvature. For q<1, it is known that there is a unique equilibrium state associated with , and it has full support. For q>1 it is known that an invariant measure is an equilibrium state if and only if it is supported on the singular set. We study the critical value q = 1 and show that the ergodic equilibrium states are either the restriction to the regular set of the Liouville measure or measures supported on the singular set. In particular, when q = 1, there is a unique ergodic equilibrium state that gives positive measure to the regular set.
分享
查看原文
一阶非正曲率曲面测地流的相变
我们研究了非正曲率紧致秩为1的曲面的测地流的与不稳定Jacobian势(或几何势)相关的一参数势函数族。对于q1,已知不变测度是平衡态,当且仅当它在奇异集上得到支持。我们研究临界值q = 1,并证明遍历平衡态要么是对Liouville测度正则集的限制,要么是奇异集上支持的测度。特别是当q = 1,存在一个唯一的遍历平衡态,它给出了正则集的正测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信