An extension of the van Hemmen–Ando norm inequality

Pub Date : 2022-08-03 DOI:10.1017/S0017089522000155
H. Najafi
{"title":"An extension of the van Hemmen–Ando norm inequality","authors":"H. Najafi","doi":"10.1017/S0017089522000155","DOIUrl":null,"url":null,"abstract":"Abstract Let $C_{\\||.\\||}$ be an ideal of compact operators with symmetric norm $\\||.\\||$ . In this paper, we extend the van Hemmen–Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on $[0,\\infty)$ and S and T are bounded operators in $\\mathbb{B}(\\mathscr{H}\\;\\,)$ such that ${\\rm{sp}}(S),{\\rm{sp}}(T) \\subseteq \\Gamma_a=\\{z\\in \\mathbb{C} \\ | \\ {\\rm{re}}(z)\\geq a\\}$ , then \\begin{equation*}\\||f(S)X-Xf(T)\\|| \\leq\\;f'(a) \\ \\||SX-XT\\||,\\end{equation*} for each $X\\in C_{\\||.\\||}$ . In particular, if ${\\rm{sp}}(S), {\\rm{sp}}(T) \\subseteq \\Gamma_a$ , then \\begin{equation*}\\||S^r X-XT^r\\|| \\leq r a^{r-1} \\ \\||SX-XT\\||,\\end{equation*} for each $X\\in C_{\\||.\\||}$ and for each $0\\leq r\\leq 1$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089522000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let $C_{\||.\||}$ be an ideal of compact operators with symmetric norm $\||.\||$ . In this paper, we extend the van Hemmen–Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on $[0,\infty)$ and S and T are bounded operators in $\mathbb{B}(\mathscr{H}\;\,)$ such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a=\{z\in \mathbb{C} \ | \ {\rm{re}}(z)\geq a\}$ , then \begin{equation*}\||f(S)X-Xf(T)\|| \leq\;f'(a) \ \||SX-XT\||,\end{equation*} for each $X\in C_{\||.\||}$ . In particular, if ${\rm{sp}}(S), {\rm{sp}}(T) \subseteq \Gamma_a$ , then \begin{equation*}\||S^r X-XT^r\|| \leq r a^{r-1} \ \||SX-XT\||,\end{equation*} for each $X\in C_{\||.\||}$ and for each $0\leq r\leq 1$ .
分享
查看原文
van Hemmen-Ando范数不等式的推广
摘要设$C_{\|.\|}$是具有对称范数$\|.\ |$的紧致算子的理想。在本文中,我们推广了任意有界算子的van-Hemmen–Ando范数不等式如下:如果f是$[0,\infty)$上的算子单调函数,并且S和T是$\mathbb{B}(\mathscr{H}\;\,)$中的有界算子,使得${\rm{sp}}}\|\leq\;f'(a)\||SX-XT\||,\end{方程*}对于C_{\|.\||}$中的每个$X\。特别是,如果${\rm{sp}}(S),{\rm{sp}}(T)\substeq\Gamma_a$,则\ begin{equation*}\||S^r X-XT^r \|\leq r a ^{r-1}\|| SX-XT \||,\ end{equation*}对于C_。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信