{"title":"An extension of the van Hemmen–Ando norm inequality","authors":"H. Najafi","doi":"10.1017/S0017089522000155","DOIUrl":null,"url":null,"abstract":"Abstract Let $C_{\\||.\\||}$ be an ideal of compact operators with symmetric norm $\\||.\\||$ . In this paper, we extend the van Hemmen–Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on $[0,\\infty)$ and S and T are bounded operators in $\\mathbb{B}(\\mathscr{H}\\;\\,)$ such that ${\\rm{sp}}(S),{\\rm{sp}}(T) \\subseteq \\Gamma_a=\\{z\\in \\mathbb{C} \\ | \\ {\\rm{re}}(z)\\geq a\\}$ , then \\begin{equation*}\\||f(S)X-Xf(T)\\|| \\leq\\;f'(a) \\ \\||SX-XT\\||,\\end{equation*} for each $X\\in C_{\\||.\\||}$ . In particular, if ${\\rm{sp}}(S), {\\rm{sp}}(T) \\subseteq \\Gamma_a$ , then \\begin{equation*}\\||S^r X-XT^r\\|| \\leq r a^{r-1} \\ \\||SX-XT\\||,\\end{equation*} for each $X\\in C_{\\||.\\||}$ and for each $0\\leq r\\leq 1$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089522000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let $C_{\||.\||}$ be an ideal of compact operators with symmetric norm $\||.\||$ . In this paper, we extend the van Hemmen–Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on $[0,\infty)$ and S and T are bounded operators in $\mathbb{B}(\mathscr{H}\;\,)$ such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a=\{z\in \mathbb{C} \ | \ {\rm{re}}(z)\geq a\}$ , then \begin{equation*}\||f(S)X-Xf(T)\|| \leq\;f'(a) \ \||SX-XT\||,\end{equation*} for each $X\in C_{\||.\||}$ . In particular, if ${\rm{sp}}(S), {\rm{sp}}(T) \subseteq \Gamma_a$ , then \begin{equation*}\||S^r X-XT^r\|| \leq r a^{r-1} \ \||SX-XT\||,\end{equation*} for each $X\in C_{\||.\||}$ and for each $0\leq r\leq 1$ .