Nuclear Dipole Moments and Shielding Constants of Light Nuclei Measured in Magnetic Fields

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
W. Makulski, Mateusz A. Słowiński, P. Garbacz
{"title":"Nuclear Dipole Moments and Shielding Constants of Light Nuclei Measured in Magnetic Fields","authors":"W. Makulski, Mateusz A. Słowiński, P. Garbacz","doi":"10.3390/magnetochemistry9060148","DOIUrl":null,"url":null,"abstract":"Nuclear magnetic resonance (NMR) is a branch of spectroscopy commonly used for identifying the chemical structure of various materials. One of the areas in which NMR provides accurate data is the determination of nuclear magnetic moments. This work reviews NMR experiments with the nuclei of light elements in simple molecules. Since nuclear shielding constants from up-to-date quantum calculations are now available, very accurate dipole moments of many nuclei can be determined. Recent experimental measurements of 1H, 2H, 3H, 3He, 6Li, 7Li, 9Be, 10B, and 11B nuclear magnetic moments and the appropriate theoretical predictions are presented and commented upon. Several achievements in this field using different methodologies, such as NMR spectroscopy, molecular beam experiments, and the Penning trap method are reported.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9060148","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear magnetic resonance (NMR) is a branch of spectroscopy commonly used for identifying the chemical structure of various materials. One of the areas in which NMR provides accurate data is the determination of nuclear magnetic moments. This work reviews NMR experiments with the nuclei of light elements in simple molecules. Since nuclear shielding constants from up-to-date quantum calculations are now available, very accurate dipole moments of many nuclei can be determined. Recent experimental measurements of 1H, 2H, 3H, 3He, 6Li, 7Li, 9Be, 10B, and 11B nuclear magnetic moments and the appropriate theoretical predictions are presented and commented upon. Several achievements in this field using different methodologies, such as NMR spectroscopy, molecular beam experiments, and the Penning trap method are reported.
磁场中测量的轻核偶极矩和屏蔽常数
核磁共振(NMR)是光谱学的一个分支,通常用于识别各种材料的化学结构。核磁共振提供精确数据的领域之一是核磁矩的测定。本文综述了简单分子中轻元素核磁共振实验。由于最新量子计算的核屏蔽常数现在是可用的,因此可以非常精确地确定许多原子核的偶极矩。介绍了1H、2H、3H、3He、6Li、7Li、9Be、10B和11B核磁矩的最新实验测量结果和相应的理论预测,并进行了评论。本文报道了利用核磁共振波谱、分子束实验和Penning陷阱等不同方法在该领域取得的一些成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信