{"title":"Regional Boundary Observability for Semilinear Fractional Systems with Riemann-Liouville Derivative","authors":"Khalid Zguaid, F. E. El Alaoui","doi":"10.1080/01630563.2023.2171055","DOIUrl":null,"url":null,"abstract":"Abstract In this manuscript, we consider the problem of regional boundary observability for semilinear time-fractional systems involving the Riemann-Liouville fractional derivative. Our primary goal is to focus on reconstructing the initial state in the desired subregion located on the boundary of the spatial domain. To do that, we firstly construct a link between regional boundary observability of the considered semilinear system and regional observability of its linear part. And with the help of an extension of the Hilbert uniqueness method (HUM), we recover the value of the initial state on the desired boundary subregion. We also provide a numerical simulation based on the steps of the HUM approach that shows the proposed algorithm’s efficiency and backs up our theoretical results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2171055","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In this manuscript, we consider the problem of regional boundary observability for semilinear time-fractional systems involving the Riemann-Liouville fractional derivative. Our primary goal is to focus on reconstructing the initial state in the desired subregion located on the boundary of the spatial domain. To do that, we firstly construct a link between regional boundary observability of the considered semilinear system and regional observability of its linear part. And with the help of an extension of the Hilbert uniqueness method (HUM), we recover the value of the initial state on the desired boundary subregion. We also provide a numerical simulation based on the steps of the HUM approach that shows the proposed algorithm’s efficiency and backs up our theoretical results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.