Motivic volumes of fibers of tropicalization

IF 0.5 4区 数学 Q3 MATHEMATICS
Jeremy Usatine
{"title":"Motivic volumes of fibers of tropicalization","authors":"Jeremy Usatine","doi":"10.4171/pm/2045","DOIUrl":null,"url":null,"abstract":"Let $T$ be an algebraic torus over an algebraically closed field, let $X$ be a smooth closed subvariety of a $T$-toric variety such that $U = X \\cap T$ is not empty, and let $\\mathscr{L}(X)$ be the arc scheme of $X$. We define a tropicalization map on $\\mathscr{L}(X) \\setminus \\mathscr{L}(X \\setminus U)$, the set of arcs of $X$ that do not factor through $X \\setminus U$. We show that each fiber of this tropicalization map is a constructible subset of $\\mathscr{L}(X)$ and therefore has a motivic volume. We prove that if $U$ has a compactification with simple normal crossing boundary, then the generating function for these motivic volumes is rational, and we express this rational function in terms of certain lattice maps constructed in Hacking, Keel, and Tevelev's theory of geometric tropicalization. We explain how this result, in particular, gives a formula for Denef and Loeser's motivic zeta function of a polynomial. To further understand this formula, we also determine precisely which lattice maps arise in the construction of geometric tropicalization.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $T$ be an algebraic torus over an algebraically closed field, let $X$ be a smooth closed subvariety of a $T$-toric variety such that $U = X \cap T$ is not empty, and let $\mathscr{L}(X)$ be the arc scheme of $X$. We define a tropicalization map on $\mathscr{L}(X) \setminus \mathscr{L}(X \setminus U)$, the set of arcs of $X$ that do not factor through $X \setminus U$. We show that each fiber of this tropicalization map is a constructible subset of $\mathscr{L}(X)$ and therefore has a motivic volume. We prove that if $U$ has a compactification with simple normal crossing boundary, then the generating function for these motivic volumes is rational, and we express this rational function in terms of certain lattice maps constructed in Hacking, Keel, and Tevelev's theory of geometric tropicalization. We explain how this result, in particular, gives a formula for Denef and Loeser's motivic zeta function of a polynomial. To further understand this formula, we also determine precisely which lattice maps arise in the construction of geometric tropicalization.
热带化纤维的动力体积
设$T$是代数闭域上的代数环面,设$X$是$T$的光滑闭子簇,使得$U = X \cap T$不为空,设$\mathscr{L}(X)$是$X$的弧格式。我们在$\mathscr{L}(X) \setminus \mathscr{L}(X \setminus U)$上定义了一个热带化映射,即$X$中不经过$X \setminus U$因式分解的弧的集合。我们证明了这个热带化图的每个纤维都是$\mathscr{L}(X)$的一个可构造子集,因此具有一个动机体积。我们证明了如果$U$具有简单法向交叉边界紧化,那么这些动力体积的生成函数是有理的,并且我们用Hacking, Keel和Tevelev的几何热带化理论中构造的晶格映射来表示这个有理函数。我们特别解释了这个结果是如何给出Denef和Loeser的多项式的动机zeta函数的公式的。为了进一步理解这个公式,我们还精确地确定几何热带化构造中出现的点阵图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信