Large Region of Homozygous (ROH) Identified in Indian Patients with Autosomal Recessive Limb-Girdle Muscular Dystrophy with p.Thr182Pro Variant in SGCB Gene
V. Manjunath, S. G. Thenral, B. R. Lakshmi, Atchayaram Nalini, A. Bassi, K. Priya Karthikeyan, K. Piyusha, R. Menon, A. Malhotra, L. S. Praveena, R. M. Anjanappa, S. M. Sakthivel Murugan, Kiran Polavarapu, Mainak Bardhan, V. Preethish-Kumar, Seena Vengalil, Saraswati Nashi, S. Sanga, M. Acharya, R. Raju, V. R. Pai, V. L. Ramprasad, R. Gupta
{"title":"Large Region of Homozygous (ROH) Identified in Indian Patients with Autosomal Recessive Limb-Girdle Muscular Dystrophy with p.Thr182Pro Variant in SGCB Gene","authors":"V. Manjunath, S. G. Thenral, B. R. Lakshmi, Atchayaram Nalini, A. Bassi, K. Priya Karthikeyan, K. Piyusha, R. Menon, A. Malhotra, L. S. Praveena, R. M. Anjanappa, S. M. Sakthivel Murugan, Kiran Polavarapu, Mainak Bardhan, V. Preethish-Kumar, Seena Vengalil, Saraswati Nashi, S. Sanga, M. Acharya, R. Raju, V. R. Pai, V. L. Ramprasad, R. Gupta","doi":"10.1155/2023/4362273","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The sarcoglycanopathies are autosomal recessive limb-girdle muscular dystrophies (LGMDs) caused by the mutations in genes encoding the <i>α</i>, <i>β</i>, <i>γ</i>, and <i>δ</i> proteins which stabilizes the sarcolemma of muscle cells. The clinical phenotype is characterized by progressive proximal muscle weakness with childhood onset. Muscle biopsy findings are diagnostic in confirming dystrophic changes and deficiency of one or more sarcoglycan proteins. In this study, we summarized 1,046 LGMD patients for which a precise diagnosis was identified using targeted sequencing. The most frequent phenotypes identified in the patients are LGMDR1 (19.7%), LGMDR4 (19.0%), LGMDR2 (17.5%), and MMD1 (14.5%). Among the reported genes, each of <i>CAPN3</i>, <i>SGCB</i>, and <i>DYSF</i> variants was reported in more than 10% of our study cohort. The most common variant <i>SGCB</i> p.Thr182Pro was identified in 146 (12.5%) of the LGMD patients, and in 97.9% of these patients, the variant was found to be homozygous. To understand the genetic structure of the patients carrying <i>SGCB</i> p.Thr182Pro, we genotyped 68 LGMD patients using a whole genome microarray. Analysis of the array data identified a large ~1 Mb region of homozygosity (ROH) (chr4:51817441-528499552) suggestive of a shared genomic region overlapping the recurrent missense variant and shared across all 68 patients. Haplotype analysis identified 133 marker haplotypes that were present in ~85.3% of the probands as a double allele and absent in all random controls. We also identified 5 markers (rs1910739, rs6852236, rs13122418, rs13353646, and rs6554360) which were present in a significantly higher proportion in the patients compared to random control set (<i>n</i> = 128) and the population database. Of note, admixture analysis was suggestive of greater proportion of West Eurasian/European ancestry as compared to random controls. Haplotype analysis and frequency in the population database indicate a probable event of founder effect. Further systematic study is needed to identify the communities and regions where the <i>SGCB</i> p.Thr182Pro variant is observed in higher proportions. After identifying these communities and//or region, a screening program is needed to identify carriers and provide them counselling.</p>\n </div>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2023 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/4362273","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/4362273","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The sarcoglycanopathies are autosomal recessive limb-girdle muscular dystrophies (LGMDs) caused by the mutations in genes encoding the α, β, γ, and δ proteins which stabilizes the sarcolemma of muscle cells. The clinical phenotype is characterized by progressive proximal muscle weakness with childhood onset. Muscle biopsy findings are diagnostic in confirming dystrophic changes and deficiency of one or more sarcoglycan proteins. In this study, we summarized 1,046 LGMD patients for which a precise diagnosis was identified using targeted sequencing. The most frequent phenotypes identified in the patients are LGMDR1 (19.7%), LGMDR4 (19.0%), LGMDR2 (17.5%), and MMD1 (14.5%). Among the reported genes, each of CAPN3, SGCB, and DYSF variants was reported in more than 10% of our study cohort. The most common variant SGCB p.Thr182Pro was identified in 146 (12.5%) of the LGMD patients, and in 97.9% of these patients, the variant was found to be homozygous. To understand the genetic structure of the patients carrying SGCB p.Thr182Pro, we genotyped 68 LGMD patients using a whole genome microarray. Analysis of the array data identified a large ~1 Mb region of homozygosity (ROH) (chr4:51817441-528499552) suggestive of a shared genomic region overlapping the recurrent missense variant and shared across all 68 patients. Haplotype analysis identified 133 marker haplotypes that were present in ~85.3% of the probands as a double allele and absent in all random controls. We also identified 5 markers (rs1910739, rs6852236, rs13122418, rs13353646, and rs6554360) which were present in a significantly higher proportion in the patients compared to random control set (n = 128) and the population database. Of note, admixture analysis was suggestive of greater proportion of West Eurasian/European ancestry as compared to random controls. Haplotype analysis and frequency in the population database indicate a probable event of founder effect. Further systematic study is needed to identify the communities and regions where the SGCB p.Thr182Pro variant is observed in higher proportions. After identifying these communities and//or region, a screening program is needed to identify carriers and provide them counselling.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.