Xupeng Zhu, Huimin Shi, Shi Zhang, Mengjie Zheng, Peng Dai, Ruomeng Huang, Jun Liao, Shuwen Xue, Jun Zhang
{"title":"High Figure of Merit Refractive Index Sensor Derived From the Axial Length Ratio of Elliptically Polarized Light of Chiral Plasmonic Structure Arrays","authors":"Xupeng Zhu, Huimin Shi, Shi Zhang, Mengjie Zheng, Peng Dai, Ruomeng Huang, Jun Liao, Shuwen Xue, Jun Zhang","doi":"10.1007/s11468-023-01947-1","DOIUrl":null,"url":null,"abstract":"<div><p>The refractive index sensor based on the Fano resonance effect (that is, Fano sensor) is one promising branch of plasmonic sensing applications owing to its narrow spectral line shape. Further improvement in the sensitivity and figure of merit (FOM) is the main issue in this field. In contrast to the Fano sensor, herein, we report a novel ultra-sensitive refractive index sensor based on the axial length ratio of transmitted elliptically polarized light of chiral plasmonic structure arrays (that is, ratio sensor). Compared with the optimized Fano sensor in the same asymmetric chiral plasmonic structure arrays, the proposed ratio sensor shows a better sensitivity performance of 556.9 nm/RIU, that is, 1.31 times higher than that of the optimized Fano sensor. Specifically, the quality factor of the spectral line shape and FOM of the proposed ratio sensor reach 121.6 and 60, respectively, that are 2.14 and 2.92 times higher than those of the optimized Fano sensor, respectively. Our study proposes a potential path to achieve high-quality ultra-sensitive refractive index sensing.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"18 6","pages":"2365 - 2373"},"PeriodicalIF":3.3000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-01947-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The refractive index sensor based on the Fano resonance effect (that is, Fano sensor) is one promising branch of plasmonic sensing applications owing to its narrow spectral line shape. Further improvement in the sensitivity and figure of merit (FOM) is the main issue in this field. In contrast to the Fano sensor, herein, we report a novel ultra-sensitive refractive index sensor based on the axial length ratio of transmitted elliptically polarized light of chiral plasmonic structure arrays (that is, ratio sensor). Compared with the optimized Fano sensor in the same asymmetric chiral plasmonic structure arrays, the proposed ratio sensor shows a better sensitivity performance of 556.9 nm/RIU, that is, 1.31 times higher than that of the optimized Fano sensor. Specifically, the quality factor of the spectral line shape and FOM of the proposed ratio sensor reach 121.6 and 60, respectively, that are 2.14 and 2.92 times higher than those of the optimized Fano sensor, respectively. Our study proposes a potential path to achieve high-quality ultra-sensitive refractive index sensing.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.