C. Zeng, Song-bo Huang, Y. Yongming, Guang-hou Zhou
{"title":"Influence of End Structure on Electromagnetic Forces on End Winding of a 1550 MW Nuclear Generator","authors":"C. Zeng, Song-bo Huang, Y. Yongming, Guang-hou Zhou","doi":"10.1155/2017/9545238","DOIUrl":null,"url":null,"abstract":"A 3D electromagnetic model of the end region of a 1550 MW nuclear generator is set up. The electromagnetic forces on the involute and nose parts of the end winding under a rated operation are obtained through the 3D time-step finite element method. The electromagnetic forces on different coils in the same phase are analyzed. By changing the rotor’s relative length and stator coil’s linear length in the 3D electromagnetic model, the electromagnetic force distributions on the end winding are obtained. The influence of each structure change on the electromagnetic force in different directions is studied in detail. Conclusions that can be helpful in decreasing the electromagnetic forces on the end winding through optimizing the end region design are presented.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2017 1","pages":"1-12"},"PeriodicalIF":0.9000,"publicationDate":"2017-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9545238","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/9545238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4
Abstract
A 3D electromagnetic model of the end region of a 1550 MW nuclear generator is set up. The electromagnetic forces on the involute and nose parts of the end winding under a rated operation are obtained through the 3D time-step finite element method. The electromagnetic forces on different coils in the same phase are analyzed. By changing the rotor’s relative length and stator coil’s linear length in the 3D electromagnetic model, the electromagnetic force distributions on the end winding are obtained. The influence of each structure change on the electromagnetic force in different directions is studied in detail. Conclusions that can be helpful in decreasing the electromagnetic forces on the end winding through optimizing the end region design are presented.
期刊介绍:
This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.