{"title":"CNN- and GAN-based classification of malicious code families: A code visualization approach","authors":"Ziyue Wang, Weizheng Wang, Yaoqi Yang, Zhaoyang Han, Dequan Xu, Chunhua Su","doi":"10.1002/int.23094","DOIUrl":null,"url":null,"abstract":"<p>Malicious code attacks have severely hindered the current development of the Internet technologies. Once the devices are infected with virus, the damages to companies and users are unpredictable. Although researchers have developed malware detection methods, the analysis result still cannot achieve the desired accuracy due to complicated malicious code families and fast-growing variants. In this paper, to solve this problem, we combine Convolutional Neural Networks (CNNs) with Generative Adversarial Networks (GANs) to design an efficient and accurate malware detection method. First, we implement a code visualization method and utilize GAN to generate more samples of malicious code variants in the role of data augmentation. Then, the lightweight AlexNet originated from CNN to classify malware families. Finally, simulation experiments are conducted to evaluate that our CNN plus GAN model can achieve a higher classification accuracy (i.e., 97.78%) compared with some related work.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"37 12","pages":"12472-12489"},"PeriodicalIF":5.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/int.23094","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Malicious code attacks have severely hindered the current development of the Internet technologies. Once the devices are infected with virus, the damages to companies and users are unpredictable. Although researchers have developed malware detection methods, the analysis result still cannot achieve the desired accuracy due to complicated malicious code families and fast-growing variants. In this paper, to solve this problem, we combine Convolutional Neural Networks (CNNs) with Generative Adversarial Networks (GANs) to design an efficient and accurate malware detection method. First, we implement a code visualization method and utilize GAN to generate more samples of malicious code variants in the role of data augmentation. Then, the lightweight AlexNet originated from CNN to classify malware families. Finally, simulation experiments are conducted to evaluate that our CNN plus GAN model can achieve a higher classification accuracy (i.e., 97.78%) compared with some related work.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.