Seydel Bueno García, María Burgos, J. Godino, Olga Lidia Pérez González
{"title":"Significados intuitivos y formales de la integral definida en la formación de ingenieros","authors":"Seydel Bueno García, María Burgos, J. Godino, Olga Lidia Pérez González","doi":"10.12802/relime.22.2521","DOIUrl":null,"url":null,"abstract":"La integral definida es un concepto central en las aplicaciones del cálculo a las ciencias experimentales e ingeniería por lo que es un tema de investigación didáctica relevante. En este trabajo se analizan los diversos significados de la integral definida aplicando herramientas teóricas del Enfoque ontosemiótico del conocimiento y la instrucción matemática, en particular, la interpretación del significado en términos de sistemas de prácticas operativas y discursivas relativas a la resolución de tipos de problemas y el modelo de niveles de algebrización de la actividad matemática. Se identifican tipos de situaciones-problemas y configuraciones de prácticas, objetos y procesos que permiten caracterizar y articular los diversos significados parciales de la integral definida (geométrico-intuitivo, como límite de sumas de Riemann y función acumulativa) así como de sus extensiones al caso de integral dobles (como caso particular de las múltiples) y de línea, desde los más intuitivos a los más formales. El análisis permite identificar los grados de generalidad de los objetos del cálculo integral y el papel del álgebra en la caracterización de los significados de la integral definida, que deben considerarse en la planificación y gestión de los procesos de enseñanza y aprendizaje del cálculo integral en las carreras de ingeniería.","PeriodicalId":43825,"journal":{"name":"Revista Latinoamericana De Investigacion En Matematica Educativa-Relime","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Latinoamericana De Investigacion En Matematica Educativa-Relime","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.12802/relime.22.2521","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
La integral definida es un concepto central en las aplicaciones del cálculo a las ciencias experimentales e ingeniería por lo que es un tema de investigación didáctica relevante. En este trabajo se analizan los diversos significados de la integral definida aplicando herramientas teóricas del Enfoque ontosemiótico del conocimiento y la instrucción matemática, en particular, la interpretación del significado en términos de sistemas de prácticas operativas y discursivas relativas a la resolución de tipos de problemas y el modelo de niveles de algebrización de la actividad matemática. Se identifican tipos de situaciones-problemas y configuraciones de prácticas, objetos y procesos que permiten caracterizar y articular los diversos significados parciales de la integral definida (geométrico-intuitivo, como límite de sumas de Riemann y función acumulativa) así como de sus extensiones al caso de integral dobles (como caso particular de las múltiples) y de línea, desde los más intuitivos a los más formales. El análisis permite identificar los grados de generalidad de los objetos del cálculo integral y el papel del álgebra en la caracterización de los significados de la integral definida, que deben considerarse en la planificación y gestión de los procesos de enseñanza y aprendizaje del cálculo integral en las carreras de ingeniería.