Efficient removal of perfluorinated compounds with the polyamide nanofiltration membrane and membrane fouling resistance analysis

IF 2.4 4区 环境科学与生态学 Q2 WATER RESOURCES
Yuyang Wu
{"title":"Efficient removal of perfluorinated compounds with the polyamide nanofiltration membrane and membrane fouling resistance analysis","authors":"Yuyang Wu","doi":"10.2166/wqrj.2023.011","DOIUrl":null,"url":null,"abstract":"\n \n Perfluorinated compounds (PFCs) are significant pollutants known for their high toxicity and resistance to natural degradation, posing a severe threat to both the global environment and human health. In this study, a polyamide (PA) membrane with an intermediate layer structure of MXene-TiO2 (referred to as MXT-NFM) was utilized for the removal of PFCs. Experimental results confirm that MXT-NFM exhibited remarkable capacity in intercepting PFCs, accompanied by the high water flux. To gain insights into the mechanisms governing membrane fouling induced by PFCs, inorganic ions, and organics, a series of fouling tests were conducted using MXT-NFM under diverse conditions. Additionally, the XDLVO theory was employed to provide a theoretical perspective on the interactions occurring during the fouling process. The findings suggest that the MXene-TiO2 intermediate layer contributed to the exceptional hydrophilicity and rough surface properties, enabling multiple functionalities. These include alleviating membrane pore plugging, improving the physical configuration of the PA layer, and effectively mitigating fouling phenomena in coexisting systems during practical applications. Moreover, the particle size of pollutant colloids and the acid–base interaction were identified as decisive factors influencing the development of membrane fouling.","PeriodicalId":23720,"journal":{"name":"Water Quality Research Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wqrj.2023.011","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluorinated compounds (PFCs) are significant pollutants known for their high toxicity and resistance to natural degradation, posing a severe threat to both the global environment and human health. In this study, a polyamide (PA) membrane with an intermediate layer structure of MXene-TiO2 (referred to as MXT-NFM) was utilized for the removal of PFCs. Experimental results confirm that MXT-NFM exhibited remarkable capacity in intercepting PFCs, accompanied by the high water flux. To gain insights into the mechanisms governing membrane fouling induced by PFCs, inorganic ions, and organics, a series of fouling tests were conducted using MXT-NFM under diverse conditions. Additionally, the XDLVO theory was employed to provide a theoretical perspective on the interactions occurring during the fouling process. The findings suggest that the MXene-TiO2 intermediate layer contributed to the exceptional hydrophilicity and rough surface properties, enabling multiple functionalities. These include alleviating membrane pore plugging, improving the physical configuration of the PA layer, and effectively mitigating fouling phenomena in coexisting systems during practical applications. Moreover, the particle size of pollutant colloids and the acid–base interaction were identified as decisive factors influencing the development of membrane fouling.
聚酰胺纳滤膜对全氟化合物的高效去除及膜污染阻力分析
全氟化合物(PFCs)是一种重要的污染物,以其高毒性和抗自然降解性而闻名,对全球环境和人类健康构成严重威胁。在本研究中,使用具有MXene-TiO2中间层结构的聚酰胺(PA)膜(称为MXT-NFM)去除PFCs。实验结果证实,MXT-NFM在高水通量的条件下具有显著的截留PFCs的能力。为了深入了解PFCs、无机离子和有机物诱导的膜污染机制,使用MXT-NFM在不同条件下进行了一系列污染测试。此外,采用XDLVO理论对结垢过程中发生的相互作用提供了理论视角。研究结果表明,MXene-TiO2中间层具有优异的亲水性和粗糙的表面性能,实现了多种功能。这些措施包括缓解膜孔堵塞,改善PA层的物理配置,以及在实际应用中有效缓解共存系统中的结垢现象。此外,污染物胶体的粒径和酸碱相互作用被确定为影响膜污染发展的决定性因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
8.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信