Zhiqiang Zhang , Zijian Wang , Kunyu Chen , Sheping Wang , Yanping Ding , Yuxiang Huang , Jinsuo Lu
{"title":"Investigation on the lateral anti-seepage capacity of a vertical soil sand layer (VSSL) in a sunken lawn","authors":"Zhiqiang Zhang , Zijian Wang , Kunyu Chen , Sheping Wang , Yanping Ding , Yuxiang Huang , Jinsuo Lu","doi":"10.1016/j.jher.2020.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>The use of a sunken lawn is an emerging Low Impact Development (LID) technique to effectively control storm runoffs. However, the random infiltration of rainwater that occurs due to the construction of a sunken lawn in an area of collapsible loess seriously threatens the safety of buildings around it. Setting up a vertical soil sand layer (VSSL) structure next to a sunken lawn as an anti-permeate method has been proposed in this study. To analyze the lateral anti-seepage effects of a VSSL, a sunken lawn model around a building was established based on soil physical parameters, and water seepage in the sunken lawn was investigated using a infiltration experiment and HYDRUS-2D software. The results show that the anti-seepage effects of a VSSL can significantly reduce the average wetting front migration length and water content at the observation points behind the sand layer. The Nash-Sutcliff Efficiency (NSE) index was used to evaluate the accuracy and reliability of the HYDRUS-2D model. The values of the NSE index obtained were greater than 0.82 (varied between 0.82 and 0.98) which confirmed the applicability of the HYDRUS-2D software in accurately describing the hydraulic behavior of the lateral anti-seepage effects of the VSSL in a sunken lawn. Simulation infiltration tests showed that, on the side of the VSSL, the wetting front migration length was reduced by 55.5% on average, and the water content of the observation points behind the sand layer was reduced by 40.5%, increasing the stability of the loess around the building infrastructure. The results are of value in practical applications, such as for devising engineering or non-engineering measures to avoid loess collapsibility around sunken lawns.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 44-52"},"PeriodicalIF":2.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jher.2020.12.001","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644320304160","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
The use of a sunken lawn is an emerging Low Impact Development (LID) technique to effectively control storm runoffs. However, the random infiltration of rainwater that occurs due to the construction of a sunken lawn in an area of collapsible loess seriously threatens the safety of buildings around it. Setting up a vertical soil sand layer (VSSL) structure next to a sunken lawn as an anti-permeate method has been proposed in this study. To analyze the lateral anti-seepage effects of a VSSL, a sunken lawn model around a building was established based on soil physical parameters, and water seepage in the sunken lawn was investigated using a infiltration experiment and HYDRUS-2D software. The results show that the anti-seepage effects of a VSSL can significantly reduce the average wetting front migration length and water content at the observation points behind the sand layer. The Nash-Sutcliff Efficiency (NSE) index was used to evaluate the accuracy and reliability of the HYDRUS-2D model. The values of the NSE index obtained were greater than 0.82 (varied between 0.82 and 0.98) which confirmed the applicability of the HYDRUS-2D software in accurately describing the hydraulic behavior of the lateral anti-seepage effects of the VSSL in a sunken lawn. Simulation infiltration tests showed that, on the side of the VSSL, the wetting front migration length was reduced by 55.5% on average, and the water content of the observation points behind the sand layer was reduced by 40.5%, increasing the stability of the loess around the building infrastructure. The results are of value in practical applications, such as for devising engineering or non-engineering measures to avoid loess collapsibility around sunken lawns.
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.