Chaojing Li, Jifu Mao, Qiwei Li, Fujun Wang, Yongjie Jiao, Ze Zhang, R. Guidoin, Lu Wang
{"title":"Long-term anticoagulation and selective cells adhesion surface via combination of covalent grafting and layer by layer assembly","authors":"Chaojing Li, Jifu Mao, Qiwei Li, Fujun Wang, Yongjie Jiao, Ze Zhang, R. Guidoin, Lu Wang","doi":"10.1088/1748-605X/ab452b","DOIUrl":null,"url":null,"abstract":"Surface modification by long-term active component is essential for biocompatible polymers-based vascular grafts to prevent thrombus formation and reduce intimal hyperplasia. In this study, a simple approach was developed to immobilize bioactive heparin to the surface of ε-polycaprolactone (PCL) grafts through a two-step strategy combining covalent grafting and layer by layer assembly of polyelectrolytes. The performance of heparinized PCL was evaluated in vitro, including the release behavior of heparin, anticoagulation and different types of cells adhesion characteristic. A sustained-release of heparin was achieved by this immobilization strategy. Surface remaining heparin was up to 1.10 μg cm−2 on the modified PCL after release in vitro for 30 d. Specifically, the heparinized PCL has the long-term ability to prevent adhesion of blood cells and thrombus formation, and significantly inhibit the adhesion of smooth muscle cells. The two-step strategy provides a simple and general route to incorporate heparin on PCL graft surface. The surface heparinized PCL demonstrated in this work can be a useful material platform for biodegradable vascular stent graft.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab452b","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab452b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
Surface modification by long-term active component is essential for biocompatible polymers-based vascular grafts to prevent thrombus formation and reduce intimal hyperplasia. In this study, a simple approach was developed to immobilize bioactive heparin to the surface of ε-polycaprolactone (PCL) grafts through a two-step strategy combining covalent grafting and layer by layer assembly of polyelectrolytes. The performance of heparinized PCL was evaluated in vitro, including the release behavior of heparin, anticoagulation and different types of cells adhesion characteristic. A sustained-release of heparin was achieved by this immobilization strategy. Surface remaining heparin was up to 1.10 μg cm−2 on the modified PCL after release in vitro for 30 d. Specifically, the heparinized PCL has the long-term ability to prevent adhesion of blood cells and thrombus formation, and significantly inhibit the adhesion of smooth muscle cells. The two-step strategy provides a simple and general route to incorporate heparin on PCL graft surface. The surface heparinized PCL demonstrated in this work can be a useful material platform for biodegradable vascular stent graft.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters