{"title":"Equitable colourings of Borel graphs","authors":"Anton Bernshteyn, Clinton T. Conley","doi":"10.1017/fmp.2021.12","DOIUrl":null,"url":null,"abstract":"Abstract Hajnal and Szemerédi proved that if G is a finite graph with maximum degree \n$\\Delta $\n , then for every integer \n$k \\geq \\Delta +1$\n , G has a proper colouring with k colours in which every two colour classes differ in size at most by \n$1$\n ; such colourings are called equitable. We obtain an analogue of this result for infinite graphs in the Borel setting. Specifically, we show that if G is an aperiodic Borel graph of finite maximum degree \n$\\Delta $\n , then for each \n$k \\geq \\Delta + 1$\n , G has a Borel proper k-colouring in which every two colour classes are related by an element of the Borel full semigroup of G. In particular, such colourings are equitable with respect to every G-invariant probability measure. We also establish a measurable version of a result of Kostochka and Nakprasit on equitable \n$\\Delta $\n -colourings of graphs with small average degree. Namely, we prove that if \n$\\Delta \\geq 3$\n , G does not contain a clique on \n$\\Delta + 1$\n vertices and \n$\\mu $\n is an atomless G-invariant probability measure such that the average degree of G with respect to \n$\\mu $\n is at most \n$\\Delta /5$\n , then G has a \n$\\mu $\n -equitable \n$\\Delta $\n -colouring. As steps toward the proof of this result, we establish measurable and list-colouring extensions of a strengthening of Brooks’ theorem due to Kostochka and Nakprasit.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2021.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Hajnal and Szemerédi proved that if G is a finite graph with maximum degree
$\Delta $
, then for every integer
$k \geq \Delta +1$
, G has a proper colouring with k colours in which every two colour classes differ in size at most by
$1$
; such colourings are called equitable. We obtain an analogue of this result for infinite graphs in the Borel setting. Specifically, we show that if G is an aperiodic Borel graph of finite maximum degree
$\Delta $
, then for each
$k \geq \Delta + 1$
, G has a Borel proper k-colouring in which every two colour classes are related by an element of the Borel full semigroup of G. In particular, such colourings are equitable with respect to every G-invariant probability measure. We also establish a measurable version of a result of Kostochka and Nakprasit on equitable
$\Delta $
-colourings of graphs with small average degree. Namely, we prove that if
$\Delta \geq 3$
, G does not contain a clique on
$\Delta + 1$
vertices and
$\mu $
is an atomless G-invariant probability measure such that the average degree of G with respect to
$\mu $
is at most
$\Delta /5$
, then G has a
$\mu $
-equitable
$\Delta $
-colouring. As steps toward the proof of this result, we establish measurable and list-colouring extensions of a strengthening of Brooks’ theorem due to Kostochka and Nakprasit.