Water-based synthesis of nanoscale hierarchical metal-organic frameworks: Boosting adsorption and catalytic performance

IF 9.9 2区 材料科学 Q1 Engineering
Yi Yu , Zewei Liu , Xiaofei Chen , Shujun Liu , Chongxiong Duan , Hongxia Xi
{"title":"Water-based synthesis of nanoscale hierarchical metal-organic frameworks: Boosting adsorption and catalytic performance","authors":"Yi Yu ,&nbsp;Zewei Liu ,&nbsp;Xiaofei Chen ,&nbsp;Shujun Liu ,&nbsp;Chongxiong Duan ,&nbsp;Hongxia Xi","doi":"10.1016/j.nanoms.2022.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of nano sizes, large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks (MOFs). Herein, a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs (NH-MOFs) with high crystallinity and excellent stability. This approach allows the morphology and porosity of MOFs to be fine tuned, thereby enabling the nanoscale crystal generation and a well-defined hierarchical system. The aqueous solution facilitates rapid nucleation kinetics, and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent (SDA) to guide the formation of hierarchical networks. The as-synthesized NH-MOFs (NH-ZIF-67) were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules, outperforming the parent microZIF-67. This study focuses on understanding the NH-MOF growth rules, which could allow tailor-designing NH-MOFs for various functions.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 4","pages":"Pages 361-368"},"PeriodicalIF":9.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000502","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of nano sizes, large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks (MOFs). Herein, a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs (NH-MOFs) with high crystallinity and excellent stability. This approach allows the morphology and porosity of MOFs to be fine tuned, thereby enabling the nanoscale crystal generation and a well-defined hierarchical system. The aqueous solution facilitates rapid nucleation kinetics, and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent (SDA) to guide the formation of hierarchical networks. The as-synthesized NH-MOFs (NH-ZIF-67) were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules, outperforming the parent microZIF-67. This study focuses on understanding the NH-MOF growth rules, which could allow tailor-designing NH-MOFs for various functions.
纳米级分级金属有机骨架的水基合成:提高吸附和催化性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信