Application of the double-difference relocation method to acoustic emission events in high-pressure deformation experiments

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Timothy Officer, Lupei Zhu, Ziyu Li, Tony Yu, David R. Edey, Yanbin Wang
{"title":"Application of the double-difference relocation method to acoustic emission events in high-pressure deformation experiments","authors":"Timothy Officer,&nbsp;Lupei Zhu,&nbsp;Ziyu Li,&nbsp;Tony Yu,&nbsp;David R. Edey,&nbsp;Yanbin Wang","doi":"10.1007/s00269-022-01203-8","DOIUrl":null,"url":null,"abstract":"<div><p>A methodology has been developed, detailing the theory and workflow, for applying the double-difference relocation method to acoustic emission (AE) event location in high-pressure/high-temperature deformation experiments in the multi-anvil apparatus. The process is predicated on the fact that events originating from a common source region will traverse similar ray paths from the source to the receiver and display similar waveforms in seismograms. This implies their travel-time difference results only from their spatial offset and any velocity heterogeneity along the ray path is negated. To demonstrate the efficacy of this approach we applied it to a transformational faulting experiment on the isostructural olivine analogue Mg<sub>2</sub>GeO<sub>4</sub> under controlled deformation at 2.5 GPa and 700 °C while simultaneously monitoring stress, strain, and acoustic activity. Waveforms from all 1456 AE events were cross-correlated to measure differential arrival times and construct multiplet groups of similar events. In total, 110 multiplets were identified whose size is dominated by two large groups containing 272 and 202 events. Relocation of these two multiplets using the double-difference method significantly reduces event separation and improves location uncertainty by more than an order of magnitude when compared to absolute location techniques whose uncertainty rivals that of the sample size. In particular, event locations of the two largest multiplets reveal two dense clusters whose spatial geometry closely mirrors that of macroscopic faulting displayed in computerized tomography images of the recovered sample. In this way, we are able to link specific faults with their associated AE events, which would otherwise not be possible using traditional absolute location methods.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01203-8.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01203-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

A methodology has been developed, detailing the theory and workflow, for applying the double-difference relocation method to acoustic emission (AE) event location in high-pressure/high-temperature deformation experiments in the multi-anvil apparatus. The process is predicated on the fact that events originating from a common source region will traverse similar ray paths from the source to the receiver and display similar waveforms in seismograms. This implies their travel-time difference results only from their spatial offset and any velocity heterogeneity along the ray path is negated. To demonstrate the efficacy of this approach we applied it to a transformational faulting experiment on the isostructural olivine analogue Mg2GeO4 under controlled deformation at 2.5 GPa and 700 °C while simultaneously monitoring stress, strain, and acoustic activity. Waveforms from all 1456 AE events were cross-correlated to measure differential arrival times and construct multiplet groups of similar events. In total, 110 multiplets were identified whose size is dominated by two large groups containing 272 and 202 events. Relocation of these two multiplets using the double-difference method significantly reduces event separation and improves location uncertainty by more than an order of magnitude when compared to absolute location techniques whose uncertainty rivals that of the sample size. In particular, event locations of the two largest multiplets reveal two dense clusters whose spatial geometry closely mirrors that of macroscopic faulting displayed in computerized tomography images of the recovered sample. In this way, we are able to link specific faults with their associated AE events, which would otherwise not be possible using traditional absolute location methods.

Abstract Image

双差定位方法在高压变形实验声发射事件中的应用
提出了一种将双差定位方法应用于多砧装置高压/高温形变实验声发射事件定位的方法,详细介绍了该方法的原理和工作流程。这个过程是基于这样一个事实,即来自一个共同震源区域的事件将从震源到接收器穿越相似的射线路径,并在地震图中显示相似的波形。这意味着它们的走时差异仅来自它们的空间偏移,并且沿着射线路径的任何速度非均质性都是否定的。为了证明该方法的有效性,我们将其应用于等构造橄榄石类似物Mg2GeO4的转换断层实验,该实验在2.5 GPa和700°C的控制变形下进行,同时监测应力、应变和声活动。所有1456个AE事件的波形相互关联,以测量不同的到达时间,并构建多个类似事件组。总共鉴定出110个多胞胎,其大小由两大组主导,其中包含272和202个事件。与不确定性与样本量相当的绝对定位技术相比,使用双差方法对这两个多胞胎进行重新定位可以显著减少事件分离,并将定位不确定性提高一个数量级以上。特别是,两个最大的多胞胎的事件位置揭示了两个密集的集群,其空间几何形状与恢复样本的计算机断层扫描图像中显示的宏观断层密切相关。通过这种方式,我们能够将特定的断层与其相关的声发射事件联系起来,否则使用传统的绝对定位方法是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信