{"title":"Chelating agents for diluted geothermal brine reinjection","authors":"Jacquelin E. Cobos, Erik G. Søgaard","doi":"10.1186/s40517-022-00227-1","DOIUrl":null,"url":null,"abstract":"<div><p>“Blue energy” could be produced by exploiting the large salinity gradient between geothermal fluids and freshwater through a SaltPower system. This study is an attempt to select the most favorable chemicals to avoid injectivity issues when a diluted geothermal fluid resulting from the SaltPower system is returned to the reservoir. Three synthetic chelating agents (oxalic acid, EDTA, and EDDS) and one natural (humic acid) were evaluated through speciation simulations and isothermal titration calorimetry (ITC) experiments. The speciation simulation results indicate that the degree of complexing is highly dependent on pH and chelating agent type. The ITC experiments show that the total heat for the formation of soluble metal–ligand complexes in the rock + geothermal brine system follows: EDTA > EDDS > oxalic acid > humic acid. The simulations and calorimetry results suggest that EDTA could be used to avoid the precipitation of Fe(III) oxides and other minerals (e.g., calcite and dolomite) inside the porous media upon the reinjection of diluted geothermal brine coming from SaltPower electricity production.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00227-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-022-00227-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
“Blue energy” could be produced by exploiting the large salinity gradient between geothermal fluids and freshwater through a SaltPower system. This study is an attempt to select the most favorable chemicals to avoid injectivity issues when a diluted geothermal fluid resulting from the SaltPower system is returned to the reservoir. Three synthetic chelating agents (oxalic acid, EDTA, and EDDS) and one natural (humic acid) were evaluated through speciation simulations and isothermal titration calorimetry (ITC) experiments. The speciation simulation results indicate that the degree of complexing is highly dependent on pH and chelating agent type. The ITC experiments show that the total heat for the formation of soluble metal–ligand complexes in the rock + geothermal brine system follows: EDTA > EDDS > oxalic acid > humic acid. The simulations and calorimetry results suggest that EDTA could be used to avoid the precipitation of Fe(III) oxides and other minerals (e.g., calcite and dolomite) inside the porous media upon the reinjection of diluted geothermal brine coming from SaltPower electricity production.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.