On genus one mirror symmetry in higher dimensions and the BCOV conjectures

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dennis Eriksson, Gerard Freixas i Montplet, Christophe Mourougane
{"title":"On genus one mirror symmetry in higher dimensions and the BCOV conjectures","authors":"Dennis Eriksson, Gerard Freixas i Montplet, Christophe Mourougane","doi":"10.1017/fmp.2022.13","DOIUrl":null,"url":null,"abstract":"Abstract The mathematical physicists Bershadsky–Cecotti–Ooguri–Vafa (BCOV) proposed, in a seminal article from 1994, a conjecture extending genus zero mirror symmetry to higher genera. With a view towards a refined formulation of the Grothendieck–Riemann–Roch theorem, we offer a mathematical description of the BCOV conjecture at genus one. As an application of the arithmetic Riemann–Roch theorem of Gillet–Soulé and our previous results on the BCOV invariant, we establish this conjecture for Calabi–Yau hypersurfaces in projective spaces. Our contribution takes place on the B-side, and together with the work of Zinger on the A-side, it provides the first complete examples of the mirror symmetry program in higher dimensions. The case of quintic threefolds was studied by Fang–Lu–Yoshikawa. Our approach also lends itself to arithmetic considerations of the BCOV invariant, and we study a Chowla–Selberg type theorem expressing it in terms of special \n$\\Gamma $\n -values for certain Calabi–Yau manifolds with complex multiplication.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2022.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract The mathematical physicists Bershadsky–Cecotti–Ooguri–Vafa (BCOV) proposed, in a seminal article from 1994, a conjecture extending genus zero mirror symmetry to higher genera. With a view towards a refined formulation of the Grothendieck–Riemann–Roch theorem, we offer a mathematical description of the BCOV conjecture at genus one. As an application of the arithmetic Riemann–Roch theorem of Gillet–Soulé and our previous results on the BCOV invariant, we establish this conjecture for Calabi–Yau hypersurfaces in projective spaces. Our contribution takes place on the B-side, and together with the work of Zinger on the A-side, it provides the first complete examples of the mirror symmetry program in higher dimensions. The case of quintic threefolds was studied by Fang–Lu–Yoshikawa. Our approach also lends itself to arithmetic considerations of the BCOV invariant, and we study a Chowla–Selberg type theorem expressing it in terms of special $\Gamma $ -values for certain Calabi–Yau manifolds with complex multiplication.
高维亏格单镜对称性与BCOV猜想
摘要数学物理学家Bershadsky–Cecotti–Ooguri–Vafa(BCOV)在1994年的一篇开创性文章中提出了一个将属零镜像对称性扩展到更高属的猜想。为了改进Grothendieck–Riemann–Roch定理,我们对亏格一的BCOV猜想进行了数学描述。作为Gillet–Soulé的算术Riemann–Roch定理和我们先前关于BCOV不变量的结果的一个应用,我们建立了投影空间中Calabi–Yau超曲面的这个猜想。我们的贡献发生在B面上,与Zinger在A面上的工作一起,它提供了高维镜像对称程序的第一个完整例子。方-鲁-吉川研究了五次三重的情况。我们的方法也适用于BCOV不变量的算术考虑,并且我们研究了Chowla–Selberg型定理,该定理用某些具有复数乘法的Calabi–Yau流形的特殊$\Gamma$值来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信