{"title":"Robust dual-tone multi-frequency tone detection using k-nearest neighbour classifier for a noisy environment","authors":"Arun Maity, P. Prakasam, Sarthak Bhargava","doi":"10.1108/ACI-10-2020-0105","DOIUrl":null,"url":null,"abstract":"\nPurpose\nDue to the continuous and rapid evolution of telecommunication equipment, the demand for more efficient and noise-robust detection of dual-tone multi-frequency (DTMF) signals is most significant.\n\n\nDesign/methodology/approach\nA novel machine learning-based approach to detect DTMF tones affected by noise, frequency and time variations by employing the k-nearest neighbour (KNN) algorithm is proposed. The features required for training the proposed KNN classifier are extracted using Goertzel's algorithm that estimates the absolute discrete Fourier transform (DFT) coefficient values for the fundamental DTMF frequencies with or without considering their second harmonic frequencies. The proposed KNN classifier model is configured in four different manners which differ in being trained with or without augmented data, as well as, with or without the inclusion of second harmonic frequency DFT coefficient values as features.\n\n\nFindings\nIt is found that the model which is trained using the augmented data set and additionally includes the absolute DFT values of the second harmonic frequency values for the eight fundamental DTMF frequencies as the features, achieved the best performance with a macro classification F1 score of 0.980835, a five-fold stratified cross-validation accuracy of 98.47% and test data set detection accuracy of 98.1053%.\n\n\nOriginality/value\nThe generated DTMF signal has been classified and detected using the proposed KNN classifier which utilizes the DFT coefficient along with second harmonic frequencies for better classification. Additionally, the proposed KNN classifier has been compared with existing models to ascertain its superiority and proclaim its state-of-the-art performance.\n","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":" ","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ACI-10-2020-0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose
Due to the continuous and rapid evolution of telecommunication equipment, the demand for more efficient and noise-robust detection of dual-tone multi-frequency (DTMF) signals is most significant.
Design/methodology/approach
A novel machine learning-based approach to detect DTMF tones affected by noise, frequency and time variations by employing the k-nearest neighbour (KNN) algorithm is proposed. The features required for training the proposed KNN classifier are extracted using Goertzel's algorithm that estimates the absolute discrete Fourier transform (DFT) coefficient values for the fundamental DTMF frequencies with or without considering their second harmonic frequencies. The proposed KNN classifier model is configured in four different manners which differ in being trained with or without augmented data, as well as, with or without the inclusion of second harmonic frequency DFT coefficient values as features.
Findings
It is found that the model which is trained using the augmented data set and additionally includes the absolute DFT values of the second harmonic frequency values for the eight fundamental DTMF frequencies as the features, achieved the best performance with a macro classification F1 score of 0.980835, a five-fold stratified cross-validation accuracy of 98.47% and test data set detection accuracy of 98.1053%.
Originality/value
The generated DTMF signal has been classified and detected using the proposed KNN classifier which utilizes the DFT coefficient along with second harmonic frequencies for better classification. Additionally, the proposed KNN classifier has been compared with existing models to ascertain its superiority and proclaim its state-of-the-art performance.
期刊介绍:
Applied Computing and Informatics aims to be timely in disseminating leading-edge knowledge to researchers, practitioners and academics whose interest is in the latest developments in applied computing and information systems concepts, strategies, practices, tools and technologies. In particular, the journal encourages research studies that have significant contributions to make to the continuous development and improvement of IT practices in the Kingdom of Saudi Arabia and other countries. By doing so, the journal attempts to bridge the gap between the academic and industrial community, and therefore, welcomes theoretically grounded, methodologically sound research studies that address various IT-related problems and innovations of an applied nature. The journal will serve as a forum for practitioners, researchers, managers and IT policy makers to share their knowledge and experience in the design, development, implementation, management and evaluation of various IT applications. Contributions may deal with, but are not limited to: • Internet and E-Commerce Architecture, Infrastructure, Models, Deployment Strategies and Methodologies. • E-Business and E-Government Adoption. • Mobile Commerce and their Applications. • Applied Telecommunication Networks. • Software Engineering Approaches, Methodologies, Techniques, and Tools. • Applied Data Mining and Warehousing. • Information Strategic Planning and Recourse Management. • Applied Wireless Computing. • Enterprise Resource Planning Systems. • IT Education. • Societal, Cultural, and Ethical Issues of IT. • Policy, Legal and Global Issues of IT. • Enterprise Database Technology.