{"title":"Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications","authors":"S. Gräf","doi":"10.1515/aot-2019-0062","DOIUrl":null,"url":null,"abstract":"Abstract The use of ultra-short pulsed lasers enables the fabrication of laser-induced periodic surface structures (LIPSS) on various materials following a single-step, direct-writing technique. These specific, well-ordered nanostructures with periodicities in the order of the utilised laser wavelength facilitate the engineering of surfaces with functional properties. This review paper discusses the physical background of LIPSS formation on substrates with different material properties. Using the examples of structural colours, specific wetting states and the reduction of friction and wear, this work presents experimental approaches that allow to deliberately influence the LIPSS formation process and thus tailor the surface properties. Finally, the review concludes with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces are discussed.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2019-0062","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2019-0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 36
Abstract
Abstract The use of ultra-short pulsed lasers enables the fabrication of laser-induced periodic surface structures (LIPSS) on various materials following a single-step, direct-writing technique. These specific, well-ordered nanostructures with periodicities in the order of the utilised laser wavelength facilitate the engineering of surfaces with functional properties. This review paper discusses the physical background of LIPSS formation on substrates with different material properties. Using the examples of structural colours, specific wetting states and the reduction of friction and wear, this work presents experimental approaches that allow to deliberately influence the LIPSS formation process and thus tailor the surface properties. Finally, the review concludes with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces are discussed.
期刊介绍:
Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.