Stephen A. Wolfe , Mark Demitroff , Christina M. Neudorf , Barbara Woronko , Dorota Chmielowska-Michalak , Olav B. Lian
{"title":"Late Quaternary eolian dune-field mobilization and stabilization near the Laurentide Ice Sheet limit, New Jersey Pine Barrens, eastern USA","authors":"Stephen A. Wolfe , Mark Demitroff , Christina M. Neudorf , Barbara Woronko , Dorota Chmielowska-Michalak , Olav B. Lian","doi":"10.1016/j.aeolia.2023.100877","DOIUrl":null,"url":null,"abstract":"<div><p>Well-preserved stabilized dune fields are widespread in the New Jersey Pine Barrens, northern Atlantic Coastal Plain, USA. In this area, which was unglaciated throughout the Quaternary, quartz-rich Miocene–Pleistocene age fluvial and marginal marine sands provided source sediments for eolian mobilization. Parabolic and transverse dunes within fluvial source-bordering dune fields in small-river watersheds migrated to the east-southeast (110–125°) over unconsolidated sands and gravels. The short eolian transport distance of most dune-field sand in the presence of moderately to sub-rounded quartz grains with low sphericity indicates eolian abrasion and dune-sand fashioning occurred within a short duration of transport. Although the absolute duration of eolian transport remains unknown, dune stabilization occurred about 23–17.5 ka, with a weighted mean of 19.5 ± 0.5 ka from six dated dunes. Dune stabilization coincided with northward retreat of the Laurentide Ice Sheet from its maximum position at ∼41.500° N (∼100 km north of the study area), to ∼41.375°N (∼200 km north). The well-preserved dune morphology and narrowly constrained ages suggest rapid dune stabilization. Dune-forming katabatic winds from the WNW declined abruptly with northward migration of the ice sheet, accompanied by climatic amelioration and stabilization by vegetation. A short-lived period of eolian mobilization may have been associated with a temporary increase in sand availability from adjacent fluvially derived sediments. Post-depositional processes included soil eluviation, with dissolution features and breakage blocks on quartz grains signifying long-term <em>in-situ</em> soil weathering.</p></div>","PeriodicalId":49246,"journal":{"name":"Aeolian Research","volume":"62 ","pages":"Article 100877"},"PeriodicalIF":3.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeolian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875963723000253","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Well-preserved stabilized dune fields are widespread in the New Jersey Pine Barrens, northern Atlantic Coastal Plain, USA. In this area, which was unglaciated throughout the Quaternary, quartz-rich Miocene–Pleistocene age fluvial and marginal marine sands provided source sediments for eolian mobilization. Parabolic and transverse dunes within fluvial source-bordering dune fields in small-river watersheds migrated to the east-southeast (110–125°) over unconsolidated sands and gravels. The short eolian transport distance of most dune-field sand in the presence of moderately to sub-rounded quartz grains with low sphericity indicates eolian abrasion and dune-sand fashioning occurred within a short duration of transport. Although the absolute duration of eolian transport remains unknown, dune stabilization occurred about 23–17.5 ka, with a weighted mean of 19.5 ± 0.5 ka from six dated dunes. Dune stabilization coincided with northward retreat of the Laurentide Ice Sheet from its maximum position at ∼41.500° N (∼100 km north of the study area), to ∼41.375°N (∼200 km north). The well-preserved dune morphology and narrowly constrained ages suggest rapid dune stabilization. Dune-forming katabatic winds from the WNW declined abruptly with northward migration of the ice sheet, accompanied by climatic amelioration and stabilization by vegetation. A short-lived period of eolian mobilization may have been associated with a temporary increase in sand availability from adjacent fluvially derived sediments. Post-depositional processes included soil eluviation, with dissolution features and breakage blocks on quartz grains signifying long-term in-situ soil weathering.
期刊介绍:
The scope of Aeolian Research includes the following topics:
• Fundamental Aeolian processes, including sand and dust entrainment, transport and deposition of sediment
• Modeling and field studies of Aeolian processes
• Instrumentation/measurement in the field and lab
• Practical applications including environmental impacts and erosion control
• Aeolian landforms, geomorphology and paleoenvironments
• Dust-atmosphere/cloud interactions.